Congestion games

Sylvain Sorin

Equipe Combinatoire et Optimisation, Faculté de Mathématiques, UPMC-Paris 6
Laboratoire d’Econométrie, Ecole Polytechnique

sorin@math.jussieu.fr

Journée Théorie des Jeux et Informatique, Fevrier 2009
Chevaleret
1. Congestion games
2. Routing games
3. Extensions
4. Related questions
A finite set of facilities $K$ is given. For each $k \in K$, $c_k(x)$ (non decreasing) is its “cost” if the quantity or number of users is $x$.

1.1. Finite case
There are $n$ players and each one chooses a facility. The induce profile $x$ is thus a vector with integer components $\{x_k\}_{k \in K}$: $x_k$ is the number of users of $k$, hence $\sum x_k = n$. $X$ denotes the set of feasible profiles. At $x$, the cost of player $i$ choosing $k$ is thus $c_k(x_k)$. 
A finite set of facilities $K$ is given. For each $k \in K$, $c_k(x)$ (non decreasing) is its “cost” if the quantity or number of users is $x$.

1.1. Finite case

There are $n$ players and each one chooses a facility. The induce profile $x$ is thus a vector with integer components $\{x_k\}_{k \in K}$: $x_k$ is the number of users of $k$, hence $\sum x_k = n$. $X$ denotes the set of feasible profiles. At $x$, the cost of player $i$ choosing $k$ is thus $c_k(x_k)$. 
A finite set of facilities $K$ is given. For each $k \in K$, $c_k(x)$ (non decreasing) is its “cost” if the quantity or number of users is $x$.

1.1. Finite case

There are $n$ players and each one chooses a facility. The induce profile $x$ is thus a vector with integer components $\{x_k\}_{k \in K}$: $x_k$ is the number of users of $k$, hence $\sum x_k = n$.

$X$ denotes the set of feasible profiles. At $x$, the cost of player $i$ choosing $k$ is thus $c_k(x_k)$. 
A finite set of facilities $K$ is given. For each $k \in K$, $c_k(x)$ (non decreasing) is its “cost” if the quantity or number of users is $x$.

1.1. Finite case

There are $n$ players and each one chooses a facility. The induce profile $x$ is thus a vector with integer components $\{x_k\}_{k \in K}$: $x_k$ is the number of users of $k$, hence $\sum x_k = n$. $X$ denotes the set of feasible profiles. At $x$, the cost of player $i$ choosing $k$ is thus $c_k(x_k)$. 

Sylvain Sorin  
SyS
Definition

$x \in X$ is an equilibrium profile if none of the players has an incentive to change his choice:

$$c_k(x_k) \leq c_m(x_m + 1)$$

for all $k, m$ with $x_k > 0$. 

Sylvain Sorin

SyS
1.2. Non atomic case

Assume that the players are represented by the $[0, 1]$ continuum. Let $x_k$ the fraction of them choosing facility $k$. Hence $\sum x_k = 1$ and $X$ is the simplex $\Delta(K)$.

**Definition**

The profile $x = \{x_k\} \in X$ is an equilibrium if for any $k$ with $x_k > 0$

$$c_k(x_k) = \min_{m \in K} c_m(x_m)$$

since one player may change his choice without affecting the overall profile $\{x_k\}$. 
1.2. Non atomic case
Assume that the players are represented by the $[0, 1]$ continuum. Let $x_k$ the fraction of them choosing facility $k$. Hence $\sum x_k = 1$ and $X$ is the simplex $\Delta(K)$.

**Definition**

The profile $x = \{x_k\} \in X$ is an equilibrium if for any $k$ with $x_k > 0$

$$c_k(x_k) = \min_{m \in K} c_m(x_m)$$

since one player may change his choice without affecting the overall profile $\{x_k\}$. 
1.2. Non atomic case
Assume that the players are represented by the [0, 1] continuum. Let $x_k$ the fraction of them choosing facility $k$. Hence $\sum x_k = 1$ and $X$ is the simplex $\Delta(K)$.

**Definition**

The profile $x = \{x_k\} \in X$ is an equilibrium if for any $k$ with $x_k > 0$

$$c_k(x_k) = \min_{m \in K} c_m(x_m)$$

since one player may change his choice without affecting the overall profile $\{x_k\}$. 
1.3. Social optimum
In both cases above one could look at the best affectation over the set of feasible profiles.

**Definition**

A social optimum is a profile that maximizes

\[ F(z) = \sum_k z_k c_k(z_k) \]

over the set of feasible profiles \( X \).

Note that the above framework corresponds to *routing games with parallel links*. 
1.3. Social optimum
In both cases above one could look at the best affectation over the set of feasible profiles.

**Definition**

*A social optimum is a profile that maximizes*

\[ F(z) = \sum_{k} z_k c_k(z_k) \]

*over the set of feasible profiles X.*

Note that the above framework corresponds to routing games with parallel links.
1.3. Social optimum
In both cases above one could look at the best affectation over the set of feasible profiles.

**Definition**

A social optimum is a profile that maximizes

\[ F(z) = \sum_{k} z_k c_k(z_k) \]

over the set of feasible profiles \( X \).

Note that the above framework corresponds to routing games with parallel links.
Simple examples where the two concepts: equilibria and social optimum differ are given by the following

Example

*Finite case*

Example

*Non atomic case*

Example

*Extension*
1.4. **Potential approach**

**Finite case**

Introduce the function

\[ \Phi(x) = \sum_{k} \sum_{a=1}^{x_k} c_k(a). \]

**Definition**

\( \Phi \) is a potential for the game in the sense that for each player \( i \), a change of his choice leading from profile \( x \) to \( y \) induces a variation of his payoff by

\[ \Phi(y) - \Phi(x) \]
1.4. Potential approach

Finite case

Introduce the function

\[ \Phi(x) = \sum_k \sum_{a=1}^{x_k} c_k(a). \]

**Definition**

\( \Phi \) is a potential for the game in the sense that for each player \( i \), a change of his choice leading from profile \( x \) to \( y \) induces a variation of his payoff by

\[ \Phi(y) - \Phi(x) \]
1.4. Potential approach

Finite case

Introduce the function

\[ \Phi(x) = \sum_{k}^{x_k} \sum_{a=1}^{c_k(a)}. \]

Definition

\( \Phi \) is a potential for the game in the sense that for each player \( i \), a change of his choice leading from profile \( x \) to \( y \) induces a variation of his payoff by

\[ \Phi(y) - \Phi(x) \]
In fact if player $i$ changes from $k$ to $\ell$ his variation in payoff is

$$c_\ell(x_\ell + 1) - c_k(x_k)$$

which is the variation in $\Phi$ since $y_k = x_k - 1$, $y_\ell = x_\ell + 1$ and $y_m = x_m$ otherwise.

**Theorem**

*Any $x$ minima of $\Phi$ over $X$ is an equilibrium.*

This implies in particular the existence of (pure) equilibria and of a decentralized procedure to obtain it. There is no uniqueness in general.
In fact if player $i$ changes from $k$ to $\ell$ his variation in payoff is

$$c_{\ell}(x_{\ell} + 1) - c_k(x_k)$$

which is the variation in $\Phi$ since $y_k = x_k - 1$, $y_\ell = x_\ell + 1$ and $y_m = x_m$ otherwise.

**Theorem**

Any $x$ minima of $\Phi$ over $X$ is an equilibrium.

This implies in particular the existence of (pure) equilibria and of a decentralized procedure to obtain it. There is no uniqueness in general.
In fact if player $i$ changes from $k$ to $\ell$ his variation in payoff is

$$c_\ell(x_\ell + 1) - c_k(x_k)$$

which is the variation in $\Phi$ since $y_k = x_k - 1$, $y_\ell = x_\ell + 1$ and $y_m = x_m$ otherwise.

**Theorem**

Any $x$ minima of $\Phi$ over $X$ is an equilibrium.

This implies in particular the existence of (pure) equilibria and of a decentralized procedure to obtain it. There is no uniqueness in general.
Non atomic case
The corresponding definition is

Definition

\[ \psi(x) = \sum_k \int_0^{x_k} c_k(u) \, du \] is a potential for the atomic game.

Theorem

\( x \in X \) is an equilibrium iff \( x \) is minima of \( \psi \) over \( X \).

Essentially unique.
Non atomic case
The corresponding definition is

**Definition**

$$\Psi(x) = \sum_k \int_0^{x_k} c_k(u)du$$ is a potential for the atomic game.

**Theorem**

$x \in X$ is an equilibrium iff $x$ is minima of $\Psi$ over $X$.

Essentially unique.
Non atomic case

The corresponding definition is

**Definition**

\[ \Psi(x) = \sum_k \int_0^{x_k} c_k(u) \, du \] is a potential for the atomic game.

**Theorem**

\( x \in X \) is an equilibrium iff \( x \) is minima of \( \Psi \) over \( X \).

Essentially unique.
In particular

**Theorem**

* A SO corresponds to a NE of the game with cost functions

\[ \tilde{c}_k(u) = c_k(u) + uc'_k(u) \]

corresponding to the derivative of \( xc_k(x) \).
1. Congestion games
2. Routing games
3. Extensions
4. Related questions
The general model is given by a set of nodes $V$ and a set of directed edges $S$ with corresponding cost function $c_s$.

2.1. Nonatomic case

One is given positive amounts $m_i$ indexed by a family $I$ of couples (origin/destination). Let $R^i$ be the sets of roads associated to $i$. A flow $x$ is feasible if, denoting by $x[r]$ the load on road $r$ one has

$$\sum_{r \in R^i} x[r] = m_i.$$

The induced load on edge $s$ is $x_s = \sum_{r,s \in r} x[e]$ and the cost on this edge is $c_s(x_s)$. 
The general model is given by a set of nodes \( V \) and a set of directed edges \( S \) with corresponding cost function \( c_s \).

2.1. Nonatomic case

One is given positive amounts \( m_i \) indexed by a family \( I \) of couples (origin/destination). Let \( R^i \) be the sets of roads associated to \( i \). A flow \( x \) is feasible if, denoting by \( x[r] \) the load on road \( r \) one has

\[
\sum_{r \in R^i} x[r] = m_i.
\]

The induced load on edge \( s \) is \( x_s = \sum_{r, s \in r} x[e] \) and the cost on this edge is \( c_s(x_s) \).
The general model is given by a set of nodes $V$ and a set of directed edges $S$ with corresponding cost function $c_s$.

2.1. Nonatomic case

One is given positive amounts $m_i$ indexed by a family $I$ of couples (origin/destination). Let $R^i$ be the sets of roads associated to $i$. A flow $x$ is feasible if, denoting by $x[r]$ the load on road $r$ one has

$$\sum_{r \in R^i} x[r] = m_i.$$  

The induced load on edge $s$ is $x_s = \sum_{r,s \in r} x[r]$ and the cost on this edge is $c_s(x_s)$. 
The cost of road $r$ is thus

$$C^r(x) = \sum_{s,s \in r} c_s(x_s)$$

hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$

by using the primitive costs on edges.
The cost of road $r$ is thus

$$C^r(x) = \sum_{s, s \in r} c_s(x_s)$$

hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$

by using the primitive costs on edges.
The cost of road $r$ is thus

$$C^r(x) = \sum_{s,s \in r} c_s(x_s)$$

hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$

by using the primitive costs on edges.
Definition

A feasible flow $x$ is a social optimum if it maximizes $C(x)$.

Definition

A feasible flow $x$ is an equilibrium if for any $i$ and any roads $r, u \in R^i$ with $x[r] > 0$

$$C^r(x) \leq C^u(x).$$
Definition

A feasible flow \( x \) is a social optimum if it maximizes \( C(x) \).

Definition

A feasible flow \( x \) is an equilibrium if for any \( i \) and any roads \( r, u \in R^i \) with \( x[r] > 0 \)

\[
C^r(x) \leq C^u(x).
\]
Using the above formulation in terms of edges one obtains, for any feasible flows $x$ and $y$:

$$\sum_s c_s(x_s)y_s = \sum_i \sum_{r \in R^i} C^r(x)y[r]$$

which leads to the following variational characterization:

**Theorem**

A feasible flow $x$ is an equilibrium iff for any feasible flow $y$

$$\sum_s c_s(x_s)x_s \leq \sum_s c_s(x_s)y_s$$
Using the above formulation in terms of edges one obtains, for any feasible flows $x$ and $y$:

$$\sum_s c_s(x_s)y_s = \sum_i \sum_{r \in R^i} C^r(x)y[r]$$

which leads to the following variational characterization:

**Theorem**

*A feasible flow $x$ is an equilibrium iff for any feasible flow $y*

$$\sum_s c_s(x_s)x_s \leq \sum_s c_s(x_s)y_s$$
As above one can also introduce a potential: 
\[ \Psi(x) = \sum_s \int_0^{x_s} c_s(u)du \] and one has

**Theorem**

\[ x \text{ is an equilibrium iff } x \text{ is a minima of } \Psi \text{ over } X. \]
2.2. Braess paradox

Example

This example shows another consequence of strategic interaction (in addition to the loss of optimality at equilibrium): to increase the strategic choices may harm.
2.3. Price of anarchy

**Definition**

The cost of anarchy is the ratio between the cost of the worst equilibrium and that of a social optimum.

**Theorem**

Assume

\[ uc_s(u) \leq M \int_0^u c_s(v) dv \]

for all edges \( s \) and \( u \geq 0 \). Then the price of anarchy is at most \( M \).
2.3. Price of anarchy

**Definition**

The cost of anarchy is the ratio between the cost of the worst equilibrium and that of a social optimum.

**Theorem**

Assume

$$uc_s(u) \leq M \int_0^u c_s(v)dv$$

for all edges $s$ and $u \geq 0$. Then the price of anarchy is at most $M$. 
Proof
Note that \( uc_s(u) \geq \int_0^u c_s(v)dv \) since \( c_s \) is increasing hence if \( x \) in an equilibrium and \( y \) is feasible

\[
C(x) \leq M\psi(x) \leq M\psi(y) \leq MC(y)
\]

in particular if \( y \) is a SO.
Definition

Given a family $C$ of cost functions, define the bound

$$\alpha(C) = \sup_{c \in C} \sup_{x, r \geq 0} \frac{rc(r)}{xc(x) + (r - x)c(r)}$$

Theorem

If all $c_s$ belong to the family $C$ the price of anarchy is less than $\alpha(C)$. 
Definition

*Given a family $C$ of cost functions, define the bound*

$$\alpha(C) = \sup_{c \in C} \sup_{x, r \geq 0} \frac{rc(r)}{xc(x) + (r - x)c(r)}$$

Theorem

*If all $c_s$ belong to the family $C$ the price of anarchy is less than $\alpha(C)$.*
**Proof** Let \( y \) be feasible and \( x \) an equilibrium flow.

\[
C(y) = \sum_s c_s(y_s)y_s
\]

\[
\geq \left[ \frac{1}{\alpha(C)} \sum_s c_s(x_s)x_s \right] + \sum_s (y_s - x_s)c_s(x_s)
\]

\[
\geq \frac{C(x)}{\alpha(C)}
\]
Proof Let $y$ be feasible and $x$ an equilibrium flow.

$$C(y) = \sum_s c_s(y_s)y_s$$

$$\geq \left[ \frac{1}{\alpha(C)} \sum_s c_s(x_s)x_s \right] + \sum_s (y_s - x_s)c_s(x_s)$$

$$\geq \frac{C(x)}{\alpha(C)}$$

Corollary

For affine cost functions the price of anarchy is at most $4/3$. 
2.4. Finite game

In the finite framework each player $i$ has a couple (origin/destination) and choose a road $r \in R^i$ accordingly. The overall induced traffic on edge $s$ is then $x_s$ (number of roads chosen by the players and going through $s$) and the cost of his choice for player $i$ is

$$C^r(x) = \sum_{s, s \in r} c_s(x_s)$$

The traffic on road $r$ is denoted by $x[r]$ hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$
2.4. Finite game

In the finite framework each player $i$ has a couple (origin/destination) and choose a road $r \in R^i$ accordingly. The overall induced traffic on edge $s$ is then $x_s$ (number of roads chosen by the players and going through $s$) and the cost of his choice for player $i$ is

$$C^r(x) = \sum_{s, s \in r} c_s(x_s)$$

The traffic on road $r$ is denoted by $x[r]$ hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$
2.4. Finite game

In the finite framework each player $i$ has a couple (origin/destination) and choose a road $r \in R^i$ accordingly. The overall induced traffic on edge $s$ is then $x_s$ (number of roads chosen by the players and going through $s$) and the cost of his choice for player $i$ is

$$C^r(x) = \sum_{s, s \in r} c_s(x_s)$$

The traffic on road $r$ is denoted by $x[r]$ hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$
2.4. Finite game

In the finite framework each player $i$ has a couple (origin/destination) and choose a road $r \in R^i$ accordingly. The overall induced traffic on edge $s$ is then $x_s$ (number of roads chosen by the players and going through $s$) and the cost of his choice for player $i$ is

$$C^r(x) = \sum_{s,s \in r} c_s(x_s)$$

The traffic on road $r$ is denoted by $x[r]$ hence the total cost of the flow $x$ can be written as

$$C(x) = \sum_r C^r(x)x[r]$$

using a decomposition on roads, or alternatively

$$C(x) = \sum_s c_s(x_s)x_s$$
An equilibrium is a flow $x$ induced by the choices of the players and such that for any player $i$ playing $r$, an alternative choice $u \in R^i$ would induce a flow $x'$ with

$$C^r(x) \leq C^u(x').$$

Introduce the function

$$\Phi(x) = \sum_{s} \sum_{a=1}^{\chi_s} c_s(a).$$
Definition

An equilibrium is a flow $x$ induced by the choices of the players and such that for any player $i$ playing $r$, an alternative choice $u \in R^i$ would induce a flow $x'$ with

$$C^r(x) \leq C^u(x').$$

Introduce the function

$$\Phi(x) = \sum_s \sum_{a=1}^{x_s} c_s(a).$$
**Definition**

Φ is a potential for the game in the sense that for each player i, a change of choices leading from x to y induces a change of payoff of

$$\Phi(y) - \Phi(x).$$

**Theorem**

Any x minima of Φ over X is an equilibrium.

This implies in particular the existence of (pure) equilibria and of a decentralized procedure to obtain it.
Definition

Φ is a potential for the game in the sense that for each player i, a change of choices leading from x to y induces a change of payoff of

$$\Phi(y) - \Phi(x).$$

Theorem

Any x minima of Φ over X is an equilibrium

This implies in particular the existence of (pure) equilibria and of a decentralized procedure to obtain it.
Example

*Price of anarchy 5/2 with linear costs*

Example

*Non existence in the weighted case*

Proposition

*Existence in the weighted case for affine cost functions through a potential.*
1. Congestion games
2. Routing games
3. Extensions
4. Related questions
3.1. Atomic games: splitting case
This corresponds to the case where there are non negligible players but they can split the load they have to transport through an OD pair.

Given the other players behavior, inducing a flow \( x \), player \( i \) is in the position of of chosing a SO, hence is facing a Wardrop equilibrium problem with the new cost function

\[
\tilde{c}_s(u) = uc'_s(x_s + u) + c_s(x_s + u).
\]

However the results will differ.

Example
Non monotonicity.

Example
Price of anarchy greater than 4/3 with linear costs.
3.1. Atomic games: splitting case
This corresponds to the case where there are non negligible players but they can split the load they have to transport through an OD pair.
Given the other players behavior, inducing a flow $x$, player $i$ is in the position of choosing a SO, hence is facing a Wardrop equilibrium problem with the new cost function

$$\tilde{c}_s(u) = uc'_s(x_s + u) + c_s(x_s + u).$$

However the results will differ.

**Example**

Non monotonicity.

**Example**

Price of anarchy greater than 4/3 with linear costs.
3.1. Atomic games: splitting case
This corresponds to the case where there are non negligible players but they can split the load they have to transport through an OD pair.
Given the other players behavior, inducing a flow $x$, player $i$ is in the position of choosing a SO, hence is facing a Wardrop equilibrium problem with the new cost function

$$\tilde{c}_s(u) = uc'_s(x_s + u) + c_s(x_s + u).$$

However the results will differ.

**Example**

*Non monotonicity.*

**Example**

*Price of anarchy greater than 4/3 with linear costs.*
3.2. General case

We keep the framework of a finite set of locations (or of a finite network).

Set of players : $N$ (atomic part) + $NA = [0, M]$ (non atomic part). Let $T$ be the set of OD pairs. The non atomic players are splitted on $T$.

For each $i \in N$ and each $t \in T$ there is an atomic part given by a vector $\alpha_i^t = \{\alpha_{tm}^i\}$ and a non atomic part $[0, v_t^i]$. The total size of player $i$ is thus $w_i^t = \sum_t(\|\alpha_{tm}^i\| + v_t^i)$. Player $i$ has to choose for each $t$ a road for each indivisible package of size $\alpha_{tm}^i$ and splits the amount $v_t^i$ among the feasible roads for $t$. 
3.2. General case
We keep the framework of a finite set of locations (or of a finite network).
Set of players : $N$ (atomic part) + $NA = [0, M]$ (non atomic part).
Let $T$ be the set of OD pairs. The non atomic players are splitted on $T$.
For each $i \in N$ and each $t \in T$ there is an atomic part given by a vector $\alpha^i_t = \{\alpha^i_{tm}\}$ and a non atomic part $[0, v^i_t]$. The total size of player $i$ is thus $w^i = \sum_t (\|\alpha^i_t\| + v^i_t)$. Player $i$ has to choose for each $t$ a road for each indivisible package of size $\alpha^i_{tm}$ and splits the amount $v^i_t$ among the feasible roads for $t$. 
3.2. General case
We keep the framework of a finite set of locations (or of a finite network).
Set of players: $N$ (atomic part) + $NA = [0, M]$ (non atomic part). Let $T$ be the set of OD pairs. The non atomic players are splitted on $T$.

For each $i \in N$ and each $t \in T$ there is an atomic part given by a vector $\alpha_i^t = \{\alpha_{tm}^i\}$ and a non atomic part $[0, v_i^t]$. The total size of player $i$ is thus $w_i = \sum_t (||\alpha_i^t|| + v_i^t)$. Player $i$ has to choose for each $t$ a road for each indivisible package of size $\alpha_{tm}^i$ and splits the amount $v_i^t$ among the feasible roads for $t$. 
3.2. General case
We keep the framework of a finite set of locations (or of a finite network).
Set of players: \( N \) (atomic part) + \( NA = [0, M] \) (non atomic part).
Let \( T \) be the set of OD pairs. The non atomic players are splitted on \( T \).
For each \( i \in N \) and each \( t \in T \) there is an atomic part given by a vector \( \alpha^i_t = \{\alpha^i_{tm}\} \) and a non atomic part \([0, v^i_t]\). The total size of player \( i \) is thus \( w^i = \sum_t (\|\alpha^i_t\| + v^i_t) \). Player \( i \) has to choose for each \( t \) a road for each indivisible package of size \( \alpha^i_{tm} \) and splits the amount \( v^i_t \) among the feasible roads for \( t \).
Existence of equilibria in pure strategies
Uniqueness
Price of anarchy
Gain from collusion
Connection with “Strong equilibrium”
Paths from NE to SO where all agents are better off.
Real procedure: intensity, delay
Comparison via replica: NE of $\Gamma$ versus SO of $t\Gamma$.
Algorithms, given the players structure; on the formation of coalitions
Adapted pricing
Networks with capacities
Network formation


Bibliography II


Bibliography III


Bibliography IV


Bibliography V


Bibliography VI


