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LCP - Definition

Given: q  Rn,   M  Rn  n  

Find: z  Rn so that

z  0     w = q + Mz  0 

  means orthogonal:

zTw  = 0
    zi wi  = 0   all  i = 1,. . ., n.



LP in inequality form

primal: max        cTx
subject to Ax ≤ b

  x  0

dual: min        yTb
subject to       yTA  cT

     y  0

Weak duality:  x, y feasible (fulfilling constraints)
 cTx ≤ yTAx ≤ yTb   

Strong duality:  primal and dual are feasible
∃ feasible x, y:          cTx = yTb       ( x, y  optimal)



LCP generalizes LP

LCP encodes the complementary slackness
of strong duality:

    cTx  =        yTAx         = yTb  

 (yTA − cT)x = 0,    yT(b − Ax) = 0.

 0      0             0      0

LP  LCP

x  0     − c         + ATy   0 

y  0       b    − Ax           0 



Symmetric equilibria of symmetric games

Given: n  n   payoff matrix  A   for row player
    AT  for column player

        mixed strategy x = probability distribution on {1,...,n}
         x  0 ,  1Tx = 1

equilibrium (x, x) 
 x best response to x

Remark: As general as m  n games (A, B).



Best responses

Given: n  n   payoff matrix  A,
        mixed strategy y of column player

Ay = vector of expected payoffs against  y, 
components (Ay)i

    

 x best response to y 

 x maximizes expected payoff  xTAy

best response condition:

 ∀i :  xi > 0   (Ay)i  = u = maxk (Ay)k



Symmetric equilibria as LCP solutions

equilibrium (x, x) of game with payoff matrix  A
 x best response to x 

 1Tx = 1,

x  0       Ax ≤ 1u 

w.l.o.g. A > 0  u > 0,

equilibrium (x, x)

 z = (1/u) x ( 1/u = 1Tz ),

z  0       Az ≤ 1      "equilibrium z"



Best response polyhedron
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Best response polyhedron
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Best response polyhedron
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Projective transformation
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>z 0, <zA 1

Best response polytope
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Symmetric Lemke−Howson algorithm
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Symmetric Lemke−Howson algorithm
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found label 1

Symmetric Lemke−Howson algorithm
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Why Lemke-Howson works

LH finds at least one Nash equilibrium because

•    finitely many "vertices"

for nondegenerate (generic) games:

•    unique starting edge given missing label

•    unique continuation

precludes "coming back" like here:



Costs instead of payoffs

  1    2   2    1

  2    0             1    3

     aik       3 − aik

  payoff    cost 

  
with new cost matrix  A > 0 :

equilibrium z     z  0           Az  1



Polyhedral view
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Lemke's algorithm

 given LCP

z  0        w = q + Mz   0 
   



Lemke's algorithm

augmented LCP

z  0        w = q + Mz + dz0  0 
   z0  0



Lemke's algorithm

augmented LCP

z  0        w = q + Mz + dz0  0 
   z0  0

where

d > 0 covering vector
z0 extra variable

 

z0 = 0   z  w  solves original LCP



Lemke's algorithm

augmented LCP

z  0        w = q + Mz + dz0  0 
   z0  0

Initialization:

z  0        w = q        + dz0  0 
  

 z0  0 minimal      wi = 0 for some i   

pivot  z0  in, wi out,   

  can increase zi while maintaining  z w .



Lemke's algorithm for

M =  2  1  ,  d = 2
        1  3           1

w1 −1 2 1 2
= +     z1 +       z2 +       z0

 w2 −1 1 3 1

w1   1 0        −5        −2
= +     z1 +       z2 +          w2

 z0   1        −1        −3        −1



w1 −1 2 1 2
= +     z1 +       z2 +       z0

 w2 −1 1 3 1

w1   1 0        −5        −2
= +     z1 +       z2 +          w2

 z0   1        −1        −3        −1

z2 0.2 0      −0.2         −0.4
= +      z1 +        w1 +        w2

 z0 0.4        −1        0.6        0.2



w1   1 0        −5        −2
= +     z1 +       z2 +          w2

 z0   1        −1        −3        −1

z2 0.2 0      −0.2         −0.4
= +      z1 +        w1 +        w2

 z0 0.4        −1        0.6        0.2

z2 0.2 0      −0.2         −0.4
= +      z0 +        w1 +        w2

 z1 0.4        −1        0.6        0.2



Polyhedral view of Lemke



Polyhedral view of Lemke
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Polyhedral view of Lemke

0z

1z

2z

1

2

1

2



Polyhedral view of Lemke

1z

2z

0z

1

2

1

2



Polyhedral view of Lemke

1z

2z

0z

1

2

1

2



Polyhedral view of Lemke

1z

2z

0z

1

2

1

2



Polyhedral view of Lemke
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Complementary cones

LCP z  0      w = q + Mz  0
 

 z  0      w  0, −q = Mz − w

 −q  belongs to a complementary cone:

−q ∈C(α) = cone { Mi ,  −ej  |  i∈α,  j∉α }

 for some  α ⊆ {1,...,n},   M = [M1 M2  . . . Mn]

  α = { i | zi > 0 }



Polyhedra versus cones

polyhedral view :

– gives feasibility, 
want complementary vertex 

complementary cones :

– gives complementarity and feasibility,
want  α  giving cone C(α) containing −q  



Complementary cone C({})
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Complementary cone C({1})
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Complementary cone C({2})
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Complementary cone C({1,2})
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All complementary cones
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LCP map

Let α ⊆ {1,...,n} ,

α-orthant = cone { ei ,   −ej  | i∈α,  j∉α } ,

C(α) = cone { Mi ,  −ej  | i∈α,  j∉α } ,

xi
+ = max ( xi , 0),     xi

− = min ( xi , 0)

LCP map:       F(x) = Mx+  +  x−

so F(α-orthant) = C(α) 



Bijective LCP map F
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P-matrix

P-matrix 
 every principal minor is positive:

det (Mαα ) > 0   for all α ⊆ {1,...,n}

e.g.    2      1      det (M1,1 ) = 2 > 0  

   1      3     det (M2,2 ) = 3 > 0  

    det (M12,12 ) = det (M ) = 5 > 0  



P-matrix

P-matrix 
 every principal minor is positive:

det (Mαα ) > 0   for all α ⊆ {1,...,n}

P-matrix 
 F bijective

 ∀ q  Rn   ∃! z     s.t. z  0           Mz  −q  



Not a P-matrix

Example:

 1      2    
det (M12,12 ) = det (M) = −5 < 0

3      1
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Complementary cone C({1})
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Complementary cone C({2})
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Complementary cone C({1,2})
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Non−injective LCP map F
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F is surjective for M > 0

Given: p  Rn.

Claim: ∃ x :  F(x) = Mx+  +  x− = p



Proof (solving F(x) = p )

Let p  Rn,   α = { i | pi > 0 }.

Step 1. Consider only rows  i α.  Solution x+ to

∀ i α  xi    ∑mij xj   pi 

                j α



Proof (solving F(x) = p )

Let p  Rn,   α = { i | pi > 0 }.

Step 1. Consider only rows  i α.  Solution x+ to

∀ i α  xi     ∑(mij / pi ) xj   1

                j α
exists as Nash equilibrium (game matrix mij / pi ).



Proof (solving F(x) = p )

Let p  Rn,   α = { i | pi > 0 }.

Step 1. Consider only rows  i α.  Solution x+ to

∀ i α  xi     ∑(mij / pi ) xj   1

                j α
exists as Nash equilibrium (game matrix mij / pi ).

Step 2.   ∀ k ∉α  choose  −xk
− =  wk  0  so that

∑mkj  xj+  −  wk   =  pk  ( ≤ 0 ).       
        j α  Gives  F(x) = p.



Lemke via complementary cones

Invert the piecewise linear map F(x) along the 
line segment  [ −d, −q ] :

F(x) = Mx+  +  x−      =  (−d)(1−t) + (−q)t         (0 ≤ t ≤ 1)

t > 0:

     Mx+(1/t)  +  x−(1/t) =  (−d)(1−t )/t  + (−q)
  
 Mz −  w =  (−d)z0   + (−q)   ,         z  0  w  0 .

   



Inverting the LCP map F
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Inverting the LCP map F
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Lemke-Howson: −d = unit vector

Theorem:

Symmetric Lemke-Howson with missing label k

    = Lemke started at  −d = ek  in cone C({k})

Proof:  • initialize by pivoting z0 in,  wk  out
(still infeasible!), wk stays in negative unit column

     • pivot zk in (note Mk > 0), gives start in cone C({k})



Example with missing label 1

w1 −1 2 1 −1
= +     z1 +       z2 +       z0

 w2 −1 1 3  0

z0 −1 2 1 −1
= +     z1 +       z2 +       w1

 w2 −1 1 3  0



z0 −1 2 1 −1
= +     z1 +       z2 +       w1

 w2 −1 1 3  0

z0  1 2 −5 −1
= +     w2+       z2 +       w1

 z1  1 1 −3  0

z2 0.2       0.4      −0.2         −0.2
= +     w2 +        z0 +        w1

 z1 0.4     −0.2        0.6 0



Start at unit vector
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Complexity

A result of Morris implies that the symmetric LH can be 
best-case exponential (i.e., for any missing label).

Savani & von Stengel showed that for bimatrix games LH 
can be best-case exponential (i.e., for any missing label).

Murty and Goldfarb (independently):
Lemke's algorithm derived from an LP can be exponential 
for the specific covering vectors (0,...,0,1,...,1)T resp. 
(1,...,1,0,...,0)T.

Megiddo: Lemke for random M (not > 0) has expected 
•      exponential running time when d = (1,1,...,1)T

•      quadratic     running time when d = (ε, ε2,..., εn)T .



Starting Lemke anywhere

F is surjective for M > 0 .

So we can use any d provided we know 
x with F(x) = −d .

Example:  Choose x in an arbitrary cone and
let   d = −F(x).

Open question:

Running time for random starting point?



What is new?
  So far:  

  • Lemke only for d > 0

          • No complementary cones view of Lemke-Howson

  Now:

  • Unified view of Lemke-Howson and Lemke 

  • Surjectivity of LCP map  F  for  M > 0

  • Extension: start in arbitrary cones

  • Open question: 
challenge instances for the new algorithm?


