Geometric Views of Linear Complementarity Algorithms and Their Complexity

Rahul Savani

Bernhard von Stengel

Department of Mathematics London School of Economics

LCP - Definition

- Given: $\mathbf{q} \in \mathbf{R}^n$, $\mathbf{M} \in \mathbf{R}^{n \times n}$
- Find: $z \in \mathbf{R}^n$ so that

 $z \ge 0$ \perp $w = q + Mz \ge 0$

 \perp means orthogonal:

 $z^{\mathsf{T}}W = 0$ $\Leftrightarrow z_{\mathbf{i}}W_{\mathbf{i}} = 0 \text{ all } \mathbf{i} = 1, \dots, n.$

LP in inequality form

Weak duality: x, y feasible (fulfilling constraints) $\Rightarrow c^{T}x \le y^{T}Ax \le y^{T}b$

Strong duality: primal and dual are feasible $\Rightarrow \exists$ feasible x, y: $c^{T}x = y^{T}b$ (x, y optimal)

LCP generalizes LP

LCP encodes the complementary slackness of strong duality:

 $c^{\mathsf{T}} \mathbf{X} = \mathbf{y}^{\mathsf{T}} A \mathbf{X} = \mathbf{y}^{\mathsf{T}} b$ $\Leftrightarrow \quad (\mathbf{y}^{\mathsf{T}} A - \mathbf{c}^{\mathsf{T}}) \mathbf{X} = \mathbf{0}, \quad \mathbf{y}^{\mathsf{T}} (\mathbf{b} - A \mathbf{X}) = \mathbf{0}.$ $\geq \mathbf{0} \quad \geq \mathbf{0} \quad \geq \mathbf{0} \quad \geq \mathbf{0}$

$$LP \Leftrightarrow LCP$$

$$x \ge 0 \qquad \bot \qquad -c \qquad +A^{T}y \ge 0$$

$$y \ge 0 \qquad \bot \qquad b \qquad -Ax \qquad \ge 0$$

Symmetric equilibria of symmetric games

Given: $n \times n$ payoff matrix A for row player A^T for column player

mixed strategy x = probability distribution on $\{1,...,n\}$ $\Leftrightarrow x \ge 0$, $\mathbf{1}^T \mathbf{x} = 1$

equilibrium (x, x) ⇔ x best response to x

Remark: As general as $m \times n$ games (A, B).

Best responses

Given: n × n payoff matrix A, mixed strategy y of column player

Ay = vector of **expected payoffs** against y, components (Ay)_i

x best response to **y**

 \Leftrightarrow x maximizes expected payoff x^TAy

best response condition:

$$\Leftrightarrow \quad \forall \mathbf{i} : \mathbf{x}_{\mathbf{i}} > 0 \implies (\mathbf{A}\mathbf{y})_{\mathbf{i}} = \mathbf{u} = \max_{\mathbf{k}} (\mathbf{A}\mathbf{y})_{\mathbf{k}}$$

Symmetric equilibria as LCP solutions

equilibrium (x, x) of game with payoff matrix A \Leftrightarrow x best response to x

 $\Leftrightarrow \qquad \mathbf{1}^{\mathsf{T}}\mathbf{X} = \mathbf{1},$ $\mathbf{X} \ge \mathbf{0} \qquad \bot \qquad A\mathbf{X} \le \mathbf{1}\mathbf{u}$

w.l.o.g. $A > 0 \implies u > 0$,

equilibrium (x, x)

 $\Leftrightarrow \mathbf{Z} = (1/\mathbf{u}) \mathbf{X} \qquad (1/\mathbf{u} = \mathbf{1}^{\mathsf{T}}\mathbf{Z}),$

 $z \ge 0$ \bot $Az \le 1$ "equilibrium z"

Best response polytope

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

• finitely many "vertices"

for nondegenerate (generic) games:

- **unique** starting edge given missing label
- **unique** continuation
- \Rightarrow precludes "coming back" like here:

Costs instead of payoffs

with new cost matrix A > 0:

equilibrium z	\Leftrightarrow	z ≥ 0	\bot	Az ≥ 1
	• •	– – •		

given LCP

 $z \ge 0$ \perp $w = q + Mz \ge 0$

augmented LCP $z \ge 0 \perp w = q + Mz + dz_0 \ge 0$ $z_0 \ge 0$

where

- d > 0covering vectorZ_0extra variable
- $z_0 = 0 \iff z \perp w$ solves original LCP

Initialization:

 $z = 0 \perp w = q + dz_0 \ge 0$

 $z_0 \ge 0$ minimal $\Rightarrow w_i = 0$ for some **i** pivot z_0 in, w_i out,

 \Rightarrow can increase z_i while maintaining $z \perp w$.

Lemke's algorithm for

$$M = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \quad d = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

W ₁		-1		2		1		2	
	=		+		z ₁ +		Z ₂ +		Z 0
W2		—1		1		3		1	

Z ₂		0.2		0		-0.2		-0.4	
	=		+		Z ₁ +		w ₁ +		w ₂
Z ₀		0.4		_1		0.6		0.2	

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Complementary cones

$$LCP \qquad z \ge \mathbf{0} \quad \bot \quad \mathbf{w} = \mathbf{q} + \mathbf{M}\mathbf{z} \ge \mathbf{0}$$

 \Leftrightarrow

$$\Leftrightarrow \qquad z \ge \mathbf{0} \perp \mathbf{w} \ge \mathbf{0}, \qquad -\mathbf{q} = \mathbf{M}\mathbf{z} - \mathbf{w}$$

–q belongs to a complementary cone:

$$-q \in \mathbf{C}(\alpha) = \mathbf{cone} \{ \mathsf{M}_{\mathbf{i}}, -\mathsf{e}_{\mathbf{i}} \mid \mathbf{i} \in \alpha, \mathbf{j} \notin \alpha \}$$

for some $\alpha \subseteq \{1, \dots, n\}$, $M = [M_1 M_2 \cdots M_n]$ $\alpha = \{i \mid z_i > 0\}$

Polyhedra versus cones

polyhedral view :

gives feasibility,
want complementary vertex

complementary cones :

- gives complementarity and feasibility, want α giving cone $C(\alpha)$ containing -q

Complementary cone C({})

Complementary cone C({1})

Complementary cone C({2})

Complementary cone C({1,2})

All complementary cones

LCP map

Let $\alpha \subseteq \{1, ..., n\}$, α -orthant = cone $\{e_i, -e_j \mid i \in \alpha, j \notin \alpha\}$, $C(\alpha) = cone \{M_i, -e_j \mid i \in \alpha, j \notin \alpha\}$, $x_i^+ = max (x_i, 0), x_i^- = min (x_i, 0)$

LCP map:

$$F(\mathbf{x}) = \mathbf{M}\mathbf{x}^+ + \mathbf{x}^-$$

$$F(\alpha - orthant) = C(\alpha)$$

SO

Bijective LCP map F

P-matrix

P-matrix

 \Leftrightarrow every **principal minor** is positive:

det $(M_{\alpha\alpha}) > 0$ for all $\alpha \subseteq \{1,...,n\}$

e.g. 2 1 det
$$(M_{1,1}) = 2 > 0$$

1 3 det $(M_{2,2}) = 3 > 0$

det $(M_{12,12}) = det (M) = 5 > 0$

P-matrix

P-matrix

\Leftrightarrow every **principal minor** is positive:

det $(M_{\alpha\alpha}) > 0$ for all $\alpha \subseteq \{1,...,n\}$

Not a P-matrix

Example:

det
$$(M_{12,12}) = det (M) = -5 < 0$$

Complementary cone C({})

Complementary cone C({1})

Complementary cone C({2})

Complementary cone C({1,2})

Non-injective LCP map F

F is surjective for M > 0

Proof (solving F(x) = p)

Let $p \in \mathbb{R}^{n}$, $\alpha = \{ i | p_{i} > 0 \}.$

Step 1. Consider only rows $i \in \alpha$. Solution x+ to

 $\forall i \in \alpha \qquad x_i \perp \qquad \sum_{j \in \alpha} m_{ij} x_j \ge p_i$

Proof (solving F(x) = p)

Let $p \in \mathbb{R}^{n}$, $\alpha = \{ i \mid p_{i} > 0 \}.$

Step 1. Consider only rows $i \in \alpha$. Solution x+ to

 $\forall \mathbf{i} \in \boldsymbol{\alpha} \qquad \mathbf{x}_{\mathbf{i}} \perp \qquad \sum_{\mathbf{j} \in \boldsymbol{\alpha}} (\mathbf{m}_{\mathbf{ij}} / \mathbf{p}_{\mathbf{i}}) \mathbf{x}_{\mathbf{j}} \geq 1$

exists as Nash equilibrium (game matrix m_{ii} / p_i).

Proof (solving F(x) = p)

Let $p \in \mathbb{R}^{n}$, $\alpha = \{ i | p_{i} > 0 \}.$

Step 1. Consider only rows $i \in \alpha$. Solution x+ to

$$\forall i \in \alpha \qquad x_i \perp \qquad \sum_{j \in \alpha} (m_{ij} / p_i) x_j \ge 1$$

exists as Nash equilibrium (game matrix m_{ij} / p_i).

Step 2. $\forall k \notin \alpha$ choose $-x_k^- = w_k \ge 0$ so that $\sum_{k=1}^{\infty} m_{ki} x_i^+ - w_k = p_k (\le 0).$

 $\mathbf{j} \in \boldsymbol{\alpha}$ Gives $F(\mathbf{x}) = p$.

Lemke via complementary cones

Invert the piecewise linear map F(x) along the line segment [-d, -q]:

$$F(x) = Mx^{+} + x^{-} = (-d)(1-t) + (-q)t \qquad (0 \le t \le 1)$$

t > 0:

$$\Leftrightarrow \qquad Mx^+(1/t) + x^-(1/t) = (-d)(1-t)/t + (-q)$$

$$\Leftrightarrow \qquad \mathsf{M} \mathsf{Z} - \mathsf{w} = (-\mathsf{d})\mathsf{z}_{\mathbf{0}} + (-\mathsf{q}) \quad , \qquad \mathsf{Z} \ge \mathsf{0} \perp \mathsf{w} \ge \mathsf{0} \; .$$

Lemke-Howson: -d = unit vector

Theorem:

Symmetric Lemke-Howson with missing label k

= Lemke started at $-d = e_k$ in cone $C(\{k\})$

- **Proof:** initialize by pivoting z₀ in, w_k out (still infeasible!), w_k stays in negative unit column
 - pivot z_k in (note $M_k > 0$), gives start in cone $C(\{k\})$

Example with missing label 1

Z ₀		-1		2		1		_1	
	=		+		Z ₁ +		Z ₂ +		W ₁
W ₂		-1		1		3		0	

Z 0		-1		2		1		-1	
	=		+		Z ₁ +		Z ₂ +		w ₁
W ₂		-1		1	,	3		0	

 $\begin{bmatrix} \mathbf{Z}_2 \\ = \\ \mathbf{Z}_1 \end{bmatrix} = \begin{bmatrix} 0.2 \\ + \\ 0.4 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -0.2 \\ \mathbf{W}_2 + \\ 0.6 \end{bmatrix} = \begin{bmatrix} -0.2 \\ \mathbf{Z}_0 + \\ 0 \end{bmatrix} = \begin{bmatrix} -0.2 \\ \mathbf{W}_1 \\ 0 \end{bmatrix}$

Start at unit vector

Start at unit vector

Start at unit vector

Complexity

A result of **Morris** implies that the symmetric LH can be **best-case exponential** (i.e., for **any** missing label).

Savani & von Stengel showed that for bimatrix games LH can be best-case exponential (i.e., for any missing label).

Murty and Goldfarb (independently):

Lemke's algorithm derived from an LP can be **exponential** for the specific covering vectors $(0,...,0,1,...,1)^T$ resp. $(1,...,1,0,...,0)^T$.

Megiddo: Lemke for **random** M (not > **0**) has **expected**

- **exponential** running time when $\mathbf{d} = (1, 1, ..., 1)^{\mathsf{T}}$
- **quadratic** running time when $\mathbf{d} = (\varepsilon, \varepsilon^2, ..., \varepsilon^n)^T$.

Starting Lemke anywhere

F is surjective for M > 0.

So we can use any **d** provided we know **x** with F(x) = -d.

Example: Choose x in an arbitrary cone and let d = -F(x).

Open question:

Running time for **random** starting point?
What is new?

So far:

- Lemke only for **d** > **0**
- No complementary cones view of Lemke-Howson

Now:

- Unified view of Lemke-Howson and Lemke
- **Surjectivity** of LCP map F for M > 0
- **Extension:** start in arbitrary cones
- **Open question:** challenge instances for the new algorithm?