Geometric Views of Linear Complementarity Algorithms and Their Complexity

Rahul Savani

Bernhard von Stengel

Department of Mathematics
London School of Economics

LCP - Definition

Given: $\quad q \in \mathbf{R}^{n}, \quad M \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$
Find: $\quad z \in \mathbf{R}^{n} \quad$ so that

$$
z \geq 0 \quad \perp \quad w=q+M z \geq 0
$$

\perp means orthogonal:

$$
\begin{aligned}
& \quad z^{\top} w=0 \\
& \Leftrightarrow \quad z_{i} w_{i}=0 \quad \text { all } \mathbf{i}=1, \ldots, n .
\end{aligned}
$$

LP in inequality form

primal

max	$C^{\top} x$
subject to	$A x \leq b$
	$x \geq 0$
min	$y^{\top} b$
subject to	$y^{\top} A \geq c^{\top}$
	$y \geq 0$

dual:

Weak duality: x, y feasible (fulfilling constraints)

$$
\Rightarrow \quad c^{\top} x \leq y^{\top} A x \leq y^{\top} b
$$

Strong duality: primal and dual are feasible
$\Rightarrow \exists$ feasible x, y : $\quad c^{\top} x=y^{\top} b \quad(x, y$ optimal)

LCP generalizes LP

LCP encodes the complementary slackness of strong duality:

$$
\begin{array}{ccl}
& c^{\top} x= & y^{\top} A x \quad=y^{\top} b \\
\Leftrightarrow & \left(y^{\top} A-c^{\top}\right) x=0, & y^{\top}(b-A x)=0 . \\
\geq 0 \quad \geq 0 & \geq 0 \quad \geq 0
\end{array}
$$

$\mathrm{LP} \Leftrightarrow \mathrm{LCP}$

$$
\begin{array}{ll|c|c|c|c}
x \geq 0 & \perp & -c & +A^{\top} y & \geq 0 \\
y \geq 0 & \perp & b & -A x & \geq 0
\end{array}
$$

Symmetric equilibria of symmetric games

Given: $n \times n$ payoff matrix A for row player A^{\top} for column player
mixed strategy $x=$ probability distribution on $\{1, \ldots, n\}$ $\Leftrightarrow x \geq 0,1^{\top} x=1$
equilibrium (x, x)
$\Leftrightarrow \quad x$ best response to x

Remark: As general as $m \times n$ games (A, B).

Best responses

Given: $n \times n$ payoff matrix A, mixed strategy y of column player
$A y=$ vector of expected payoffs against y, components $(A y)_{i}$
x best response to y
$\Leftrightarrow \quad x$ maximizes expected payoff $X^{\top} A y$
best response condition:
$\Leftrightarrow \quad \forall \mathbf{i}: x_{\mathbf{i}}>0 \Rightarrow(\mathrm{Ay})_{\mathbf{i}}=u=\max _{\mathbf{k}}(\mathrm{Ay})_{\mathbf{k}}$

Symmetric equilibria as LCP solutions

equilibrium (x, x) of game with payoff matrix A
$\Leftrightarrow \quad x$ best response to x

$$
\begin{aligned}
& \Leftrightarrow \\
& x \geq 0 \quad \perp \quad \\
& \text { w.l.o.g. } \quad A>0 \quad \\
& \mathbf{1}^{\top} x=1 \\
&
\end{aligned}
$$

equilibrium (x, x)
$\Leftrightarrow \quad z=(1 / u) x \quad\left(1 / u=1^{\top} z\right)$,

$$
\mathrm{z} \geq 0 \quad \perp \quad \mathrm{~A} z \leq 1 \quad \text { "equilibrium } \mathrm{z} "
$$

Best response polyhedron

Best response polyhedron

Best response polyhedron

Projective transformation

Best response polytope

Symmetric Lemke-Howson algorithm

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

- finitely many "vertices"
for nondegenerate (generic) games:
- unique starting edge given missing label
- unique continuation
\Rightarrow precludes "coming back" like here:

Costs instead of payoffs

with new cost matrix $A>0$:

$$
\text { equilibrium } z \quad \Leftrightarrow \quad z \geq 0 \quad \perp \quad A z \geq 1
$$

Polyhedral view

Lemke's algorithm

given LCP

$$
z \geq 0 \quad \mathrm{w}=\mathrm{q}+\mathrm{Mz} \quad \geq 0
$$

Lemke's algorithm

augmented LCP

$$
\begin{aligned}
\mathrm{z} \geq \mathbf{0} \quad \perp \quad \mathrm{w}=\mathrm{q}+\mathrm{Mz}+\mathbf{d} \mathrm{z}_{0} & \geq \mathbf{0} \\
\mathrm{z}_{0} & \geq 0
\end{aligned}
$$

Lemke's algorithm

augmented LCP

$$
\begin{aligned}
\mathrm{z} \geq \mathbf{0} \quad \perp \quad \mathrm{w}=\mathrm{q}+\mathrm{Mz}+\mathbf{d} \mathrm{z}_{0} & \geq \mathbf{0} \\
\mathrm{z}_{0} & \geq 0
\end{aligned}
$$

where
$d>0 \quad$ covering vector
$z_{0} \quad$ extra variable
$z_{0}=0 \quad \Leftrightarrow \quad z \perp w$ solves original LCP

Lemke's algorithm

augmented LCP

$$
\begin{aligned}
\mathrm{z} \geq \mathbf{0} \quad \perp \quad \mathrm{w}=\mathrm{q}+\mathrm{Mz}+\mathrm{d} \mathrm{z}_{0} & \geq 0 \\
\mathrm{z}_{0} & \geq 0
\end{aligned}
$$

Initialization:

$$
\mathrm{z}=\mathbf{0} \quad \perp \quad \mathrm{w}=\mathrm{q} \quad+\mathbf{d} z_{0} \geq \mathbf{0}
$$

$z_{0} \geq 0$ minimal $\Rightarrow w_{i}=0$ for some i pivot z_{0} in, w_{i} out,
\Rightarrow can increase z_{i} while maintaining $z \perp w$.

Lemke's algorithm for

$$
M=\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array} \text {, } \quad d=\begin{aligned}
& 2 \\
& 1
\end{aligned}
$$

w_{1}	$=$	-1	+	2	$z_{1}+$	1	$z_{2}+$	2	
w_{2}		-1		1		3		1	

w_{1}	$=$	-1	+	2	$z_{1}+$	1	$z_{2}+$	2	
W_{2}		-1		1		3		1	

W_{1}		1		0		-5		-2	
z_{0}	=	1	+	-1	$z_{1}+$	-3	$\mathrm{z}_{2}+$	-1	W

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Polyhedral view of Lemke

Complementary cones

LCP

$$
z \geq \mathbf{0} \perp \quad w=q+M z \geq \mathbf{0}
$$

\Leftrightarrow

$$
z \geq 0 \quad \perp \quad w \geq 0, \quad-q=M z-w
$$

$\Leftrightarrow \quad-q$ belongs to a complementary cone:

$$
-q \in \mathbf{C}(\alpha)=\text { cone }\left\{M_{i},-e_{\mathbf{j}} \mid \mathbf{i} \in \alpha, \mathbf{j} \notin \alpha\right\}
$$

for some $\alpha \subseteq\{1, \ldots, n\}, \quad M=\left[M_{1} M_{2} \ldots M_{n}\right]$ $\alpha=\left\{\mathbf{i} \mid z_{i}>0\right\}$

Polyhedra versus cones

polyhedral view :

- gives feasibility, want complementary vertex

complementary cones :

- gives complementarity and feasibility, want α giving cone $\mathbf{C}(\alpha)$ containing -q

Complementary cone C(\{\})

Complementary cone C(\{1\})

Complementary cone C(\{2\})

Complementary cone $\mathrm{C}(\{1,2\})$

All complementary cones

LCP map

Let $\alpha \subseteq\{1, \ldots, n\}$,
α-orthant $=$ cone $\left\{\mathrm{e}_{\mathrm{i}},-\mathrm{e}_{\mathrm{j}} \mid \mathbf{i} \in \alpha, \mathbf{j} \notin \alpha\right\}$,
$\mathbf{C}(\alpha) \quad=$ cone $\left\{M_{i},-e_{\mathbf{j}} \mid \mathbf{i} \in \alpha, \mathbf{j} \notin \alpha\right\}$,
$x_{i}^{+}=\max \left(x_{i}, 0\right), \quad x_{i}^{-}=\min \left(x_{i}, 0\right)$

LCP map:
so

$$
F(x)=M x^{+}+x^{-}
$$

$F(\alpha$-orthant $)=\mathbf{C}(\alpha)$

Bijective LCP map F

P-matrix

P-matrix

\Leftrightarrow every principal minor is positive:

$$
\operatorname{det}\left(M_{\alpha \alpha}\right)>0 \text { for all } \alpha \subseteq\{1, \ldots, n\}
$$

$$
\begin{array}{lll}
\text { e.g. } & \begin{array}{ll}
2 & 1 \\
1 & 3
\end{array} & \begin{array}{l}
\operatorname{det}\left(M_{1,1}\right)
\end{array}=2>0 \\
\operatorname{det}\left(M_{2,2}\right) & =3>0 \\
& \operatorname{det}\left(M_{12,12}\right) & =\operatorname{det}(M)=5>0
\end{array}
$$

P-matrix

P-matrix

\Leftrightarrow every principal minor is positive: $\operatorname{det}\left(\mathrm{M}_{\alpha \alpha}\right)>0$ for all $\alpha \subseteq\{1, \ldots, \mathrm{n}\}$

P-matrix

$\Leftrightarrow \quad \mathrm{F}$ bijective
$\Leftrightarrow \forall q \in \mathbf{R}^{n} \quad \exists!z \quad$ s.t. $\quad z \geq 0 \quad \perp \quad M z \geq-q$

Not a P-matrix

Example:

1	2
3	1

$\operatorname{det}\left(\mathrm{M}_{12,12}\right)=\operatorname{det}(\mathrm{M})=-5<0$

Complementary cone C(\{\})

Complementary cone C(\{1\})

Complementary cone C(\{2\})

Complementary cone C(\{1,2\})

Non-injective LCP map F

F is surjective for $M>0$

Given: $p \in \mathbf{R}^{n}$.

Claim:

$$
\exists x: F(x)=M x^{+}+x^{-}=p
$$

Proof (solving $\mathrm{F}(\mathrm{x})=\mathrm{p}$)

Let $p \in \mathbf{R}^{n}, \alpha=\left\{i \mid p_{i}>0\right\}$.
Step 1. Consider only rows $\mathbf{i} \in \alpha$. Solution $\mathrm{x}+$ to

$$
\forall \mathbf{i} \in \alpha \quad x_{i} \quad \perp \quad \sum_{\mathbf{j} \in \alpha} m_{i j} x_{j} \geq p_{i}
$$

Proof (solving $\mathrm{F}(\mathrm{x})=\mathrm{p}$)

Let $p \in \mathbf{R}^{n}, \alpha=\left\{i \mid p_{i}>0\right\}$.
Step 1. Consider only rows $\mathbf{i} \in \alpha$. Solution $\mathrm{x}+$ to

$$
\forall \mathbf{i} \in \alpha \quad x_{i} \quad \perp \quad \sum_{\mathbf{j} \in \alpha}\left(m_{i j} / p_{i}\right) x_{j} \geq 1
$$

exists as Nash equilibrium (game matrix $m_{i j} / p_{i}$).

Proof (solving $F(x)=p$)

Let $p \in \mathbf{R}^{n}, \alpha=\left\{i \mid p_{i}>0\right\}$.
Step 1. Consider only rows $\mathbf{i} \in \alpha$. Solution $\mathrm{x}+$ to
$\forall \mathbf{i} \in \alpha \quad x_{i} \quad \perp \quad \sum_{\mathbf{j} \in \alpha}\left(m_{i j} / p_{i}\right) x_{j} \geq 1$
exists as Nash equilibrium (game matrix $m_{i j} / p_{i}$).
Step 2. $\forall k \notin \alpha$ choose $-x_{k}-w_{k} \geq 0$ so that

$$
\sum_{\mathbf{j} \in \alpha} m_{\mathbf{k j}} x_{\mathbf{j}^{+}}-w_{\mathbf{k}}=p_{\mathbf{k}}(\leq 0) . \quad \text { Gives } F(x)=p .
$$

Lemke via complementary cones
Invert the piecewise linear map $F(x)$ along the line segment [-d, -q]:

$$
F(x)=M x^{+}+x^{-}=(-d)(1-t)+(-q) t \quad(0 \leq t \leq 1)
$$

$$
\begin{array}{ll}
t>0: & \\
\Leftrightarrow & M x+(1 / t)+x^{-}(1 / t)=(-d)(1-t) / t+(-q) \\
\Leftrightarrow & M z-w=(-d) z_{0}+(-q), \quad z \geq 0 \perp w \geq 0 .
\end{array}
$$

Inverting the LCP map F

Lemke-Howson: -d = unit vector

Theorem:

$$
\begin{aligned}
& \text { Symmetric Lemke-Howson with missing label } k \\
= & \text { Lemke started at }-d=e_{k} \text { in cone } \mathbf{C}(\{k\})
\end{aligned}
$$

Proof: • initialize by pivoting z_{0} in, w_{k} out (still infeasible!), w_{k} stays in negative unit column

- pivot z_{k} in (note $M_{k}>0$), gives start in cone $\mathbf{C}(\{k\})$

Example with missing label 1

z_{0}	$=$	-1	+	2	$z_{1}+$	1	$\mathrm{Z}_{2}+$		
W_{2}		-1		1		3		0	

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline z_{0} \\
w_{2} & =\begin{array}{|c|c|c|c|c|}
\hline-1 \\
-1 & 1 & z_{1}+ & z_{2}+ & w_{1} \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& z_{2} \\
& z_{1}
\end{aligned}=\begin{gathered}
0.2 \\
0.4
\end{gathered}+\begin{gathered}
0.4 \\
-0.2 \\
w_{2}+{ }_{0}^{-0.2} \\
0.6 \\
z_{0}+\begin{array}{c}
-0.2 \\
0
\end{array} w_{1}
\end{gathered}
$$

Start at unit vector

Start at unit vector

Start at unit vector

Complexity

A result of Morris implies that the symmetric LH can be best-case exponential (i.e., for any missing label).

Savani \& von Stengel showed that for bimatrix games LH can be best-case exponential (i.e., for any missing label).

Murty and Goldfarb (independently):
Lemke's algorithm derived from an LP can be exponential for the specific covering vectors $(0, \ldots, 0,1, \ldots, 1)^{\top}$ resp.
$(1, \ldots, 1,0, \ldots, 0)^{\top}$.
Megiddo: Lemke for random $\mathrm{M}($ not $>0)$ has expected

- exponential running time when $\mathbf{d}=(1,1, \ldots, 1)^{\top}$
- quadratic running time when $\mathbf{d}=\left(\varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{n}\right)^{\top}$.

Starting Lemke anywhere

F is surjective for $M>0$.
So we can use any d provided we know x with $F(x)=-d$.

Example: Choose x in an arbitrary cone and let $d=-F(x)$.

Open question:

Running time for random starting point?

What is new?

So far:

- Lemke only for $\mathbf{d}>\mathbf{0}$
- No complementary cones view of Lemke-Howson

Now:

- Unified view of Lemke-Howson and Lemke
- Surjectivity of LCP map F for $M>0$
- Extension: start in arbitrary cones
- Open question:
challenge instances for the new algorithm?

