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Abstract. We introduce stochastic priority games — a new class of
perfect information stochastic games. These games can take two differ-
ent, but equivalent, forms. In stopping priority games a play can be
stopped by the environment after a finite number of stages, however,
infinite plays are also possible. In discounted priority games only infinite
plays are possible and the payoff is a linear combination of the classical
discount payoff and of a limit payoff evaluating the performance at in-
finity. Shapley games [1] and parity games [2] are special extreme cases
of priority games.

1 Introduction

Recently de Alfaro, Henzinger and Majumdar[3] introduced a new variant of
µ-calculus: discounted µ-calculus. As it is known since the seminal paper [2]
of Emerson and Jutla µ-calculus is strongly related to parity games and this
relationship is preserved even for stochastic games, [4]. In this context it is
natural to ask if there is a class of games that corresponds to discounted µ-
calculus of [3]. A partial answer to this question was given in [5], where an
appropriate class of infinite discounted games was introduced. However, in [5],
only deterministic systems were considered and much more challenging problem
of stochastic games was left open. In the present paper we return to the problem
but in the context of perfect information stochastic games. The most basic and
usually non-trivial question is if the games that we consider admit “simple”
optimal strategies for both players. We give a positive answer, for all games
presented in this paper both players have pure stationary optimal strategies.
Since our games contain parity games as a very special case, our paper extends
the result known for perfect information parity games [6–9].

However, we have an objective which is larger than just transferring to
stochastic games the results known for deterministic systems. Parity games are
used (directly or through an associated logic) in verification. Conditions that are
verified often do not depend on any finite prefix of the play (take as a typical
example a simple condition like “A wins if we visit infinitely often some set X of
states”). However, certainly all real systems have a finite life span thus we can
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ask what is the meaning of infinite games when they are used to examine such
systems. Notice that the same question arises in classical game theory [10]. The
obvious answer is that the life span is finite but unknown or sufficiently long and
thus infinite games are a convenient approximation of finite games. However,
what finite games are approximated by parity games? Notice that for the games
like mean-payoff games that are used in economics the answer is simple: infinite
mean-payoff games approximate finite mean-payoff games of long or unknown
duration. But we do not see any obvious candidate for “finite parity games”.
Suppose that C is a parity condition and fC a payoff mapping associated with
C, i.e. fC maps to 1 (win) all infinite sequence of states that satisfy C and to
0 all “loosing” sequences. Now we can look for a sequence fn, n ∈ N, of payoff
functions, such that each fn, defined for state sequences of length n, gives a
payoff for games of length n and such that for each infinite sequence s0s1 . . .

of states fn(s0 . . . sn−1) −−−−→
n→∞

fC(s0s1 . . .). However, except for very special

parity conditions C, such payoff mappings fn do not exist, thus parity games
cannot approximate finite games in the same way as infinite mean-payoff games
approximate finite mean-payoff games.

Nevertheless, it turns out that parity games approximate finite games, how-
ever “finite” does not mean here that the number of steps is fixed, instead these
games are finite in the sense that they stop with probability 1. In Section 4
we present a class of priority stopping games. In the simplest case, when the
stopping probabilities are positive for all states, stopping games are stochastic
games defined by Shapley [1]. However, we examine also stopping games for
which stopping probabilities are positive only for some states. One of the results
of this paper can be interpreted in the following way: parity games are a limit
of stopping games when the stopping probabilities tend to 0 but all at the same
time but rather one after another, in the order determined by priorities.

2 Arenas and Perfect Information Games

Perfect information stochastic games are played by two players, that we call
player 1 and player 2. We assume that player i ∈ {1, 2} controls a finite set Si

of states, S1 and S2 are disjoint and S = S1 ∪ S2 is the set of all states.
With each state s ∈ S is associated a finite non-empty set As of actions that

are available at s and we set A = ∪s∈SAs to be the set of all actions.
If the current state is s ∈ Si then player i controlling this state chooses an

available action a ∈ Si and, with a probability p(s′|s, a), the systems changes
its state to s′ ∈ S. Thus p(·|s, a), s ∈ S, a ∈ As, are transition probabilities
satisfying the usual conditions: 0 ≤ p(s′|s, a) ≤ 1 and

∑

s′∈S p(s′|s, a) = 1.
Let Hω be the set of histories, i.e. the set of all infinite sequences s0a0s1a1s2 . . .

alternating states and actions. Assuming that the sets S and A are equipped with
the discrete topology, we equip Hω with the product topology, i.e. the smallest
topology for which the mappings

Si : Hω → S, Si : Hω ∋ s0a0 . . . siai . . . 7→ si



and

Ai : Hω → A, Ai : Hω ∋ s0a0 . . . siai . . . 7→ ai

are continuous. Thus (Si)i∈N and (Ai)i∈N, are stochastic processes on the prob-
ability space (Hω,B), where B is Borel σ-algebra generated by open subsets of
Hω.

The data consisting of the state sets S1, S2, available actions (As)s∈S and
transition probabilities p(·, s, a) is an arena A.

Let u : Hω → R be a bounded Borel measurable mapping. We interpret
u(h), h ∈ Hω, as the payoff obtained by player 1 from player 2 after an infinite
play h.

A couple (A, u) consisting of an arena and a payoff mapping is a perfect
information stochastic game.

Let H+
i = (SA)∗Si, i ∈ {1, 2}, be the set of finite non-empty histories ter-

minating at a state controlled by player i. A strategy for player i is a fam-
ily of conditional probabilities σ(a|hn) for all hn = s0a0 . . . sn ∈ H+

i and a ∈
Aan

. Intuitively, σ(a|s0a0 . . . sn) gives the probability that player i controlling
the last state sn chooses an (available) action a, while the sequence hn de-
scribes the first n steps of the game. As usual 0 ≤ σ(a|s0a0 . . . sn) ≤ 1 and
∑

a∈Asn
σ(a|s0a0 . . . sn) = 1.

A strategy σ is said to be pure if for each finite history hn = s0a0 . . . sn ∈ H+
1

there is an action a ∈ Asn
such that σ(a|hn) = 1, i.e. no randomization is used to

choose an action to execute. A strategy σ is stationary if for each finite history
hn = s0a0 . . . sn ∈ H+

1 , σ(·|hn) = σ(·|sn), i.e. the probability distribution used
to choose actions depends only on the last state.

Notice that pure stationary strategies for player i can be identified with
mappings σ : Si → A such that σ(s) ∈ As for s ∈ Si.

In the sequel we shall use σ, possibly with subscripts or superscripts, to
denote a strategy of player 1. On the other hand, τ will always denote a strategy
of player 2.

Given and initial state s, strategies σ, τ of both players determine a unique
probability measure P

s
σ,τ on (Hω,B), [11].

The expectation corresponding to the probability measure P
s
σ,τ is denoted

E
s
σ,τ . Thus E

s
σ,τ (u) gives the expected payoff obtained by player 1 from player

2 in the game (A, u) starting at state s when the players use strategies σ, τ

respectively. If supσ infτ E
s
σ,τ (u) = infτ supσ E

s
σ,τ (u) for each state s then the

quantity appearing on both side of this equality is the value of the game (for
initial state s) and is denoted vals(A, u).

Strategies σ♯ and τ ♯ of players 1, 2 are optimal in the game (A, u) if for each
state s ∈ S and for all strategies σ ∈ Σ, τ ∈ T

E
s
σ,τ♯ [u] ≤ E

s
σ♯,τ♯ [u] ≤ E

s
σ♯,τ [u] .

If σ♯ and τ ♯ are optimal strategies then vals(A, u) = E
s
σ♯,τ♯ [u], i.e. the expected

payoff obtained when both players use optimal strategies is equal to the value
of the game.



3 Priority Games

Starting from this moment we assume that each arena A is equipped with a
priority mapping

ϕ : S → {1, . . . , k} (1)

from the set S of states to the set {1, . . . , k} of (positive integer) priorities. The
composition

ϕn = ϕ ◦ Sn, , n ∈ N , (2)

ϕn : Hω → {1, . . . , k}, gives therefore a stochastic process with values in
{1, . . . , k}. Then lim inf i ϕi is a random variable

Hω ∋ h 7→ lim inf
i

ϕi(h)

giving for each infinite history h ∈ Hω its priority which the smallest priority
visited infinitely often in h (we assume that {1, . . . , k} is equipped with the usual
order on integers and lim inf is taken for this order). From this moment onward,
we assume that there is a fixed a reward mapping

r : {1, . . . , k} → [0, 1] (3)

from priorities to the interval [0, 1].
The priority payoff mapping u : Hω → [0, 1] is defined as

u(h) = r(lim inf
i

ϕi(h)), h ∈ Hω . (4)

Thus, in the priority game (A, u), the payoff received by player 1 from player 2
is the reward corresponding to the minimal priority visited infinitely often. If r

maps odd priorities to 1 and even priorities to 0 then we get a parity game.
One of the referees drew our attention to the paper of McIver and Morgan [12]

where a new stochastic game is introduced and it is proved that this game admits
pure stationary optimal strategies. The framework used in [12] is so different
from the one used in our paper that the direct comparison is difficult. However,
it seems that, after an appropriate translation, the game of [12] corresponds
to the priority game defined above thus [12] gives a direct proof that priority
games admit pure stationary optimal strategies through a reduction to parity
games. In our paper we define, in Sections 4 and 5, a much larger class of games,
that includes priority games as a special case and not only we prove that all
these games admit pure stationary optimal strategies but we show also that all
these games can be seen as appropriate limits of classical discounted games of
Shapley [1].

4 Stopping Priority Games

In the sequel we assume that besides the priority and reward mappings (1) and
(3) we have also a mapping

λ : {1, . . . , k} → [0, 1] (5)



from priorities to the interval [0, 1].
We modify the rules of the priority game of Section 3 in the following way.
Every time a state s is visited the game can stop with probability 1−λ(ϕ(s)),

where ϕ(s) is the priority of s. If the game stops at s then player 1 receives from
player 2 the payoff r(ϕ(s)). If the game does not stop then the player controlling
s chooses an action a ∈ As and we go to a state t with probability p(t|s, a).
(Thus p(t|s, a) should now be interpreted as the probability to go to t under the
condition that the games does not stop.) The rules above determine the payoff
in the case when the games stops at some state s. However, λ can be 1 for some
states (priorities) and then it is possible to have also infinite plays with a positive
probability. For such infinite plays the payoff is calculated as in priority games
of the preceding section.

Let us note that if λ(p) = 1 for all priorities p ∈ {1, . . . , k} then actually we
never stop and the game described above is the same as the priority game of the
preceding section.

On the other hand, if λ(p) < 1 for all priorities p, i.e. the stopping prob-
abilities are positive for all states, then the game will stop with probability 1.
Shapley [1] proved that for such games both players have optimal stationary
strategies. In fact Shapley considered general stochastic games while we limit
ourselves to perfect information stochastic games and for such games the opti-
mal strategies constructed in [1] are not only stationary but also pure.

Theorem 1 (Shapley 1953). If, for all priorities i, λ(i) < 1 then both players
have pure stationary optimal strategies in the priority stopping game.

Stopping games have an appealing intuitive interpretation but they are not
consistent with the framework fixed in Section 2, where the probability space
consisted of infinite histories only. This obstacle can be removed in the following
way. For each priority i ∈ {1, . . . , k} we create a new “stopping” state i♯ that
we add to the arena A. The priority of i♯ is set to i, ϕ(i♯) = i. The set of
newly created states is denoted S♯. There is only one action available at each i♯

and executing this action we return immediately to i♯ with probability 1, it is
impossible to leave a stopping state. Note also that since there is only one action
available at i♯ it does not matter which of the two players controls “stopping”
states. For each non-stopping state s ∈ S we modify the transition probabilities.
Formally we define new transition probabilities p♯(·|·, ·) by setting, for s, t ∈ S,
a ∈ As,

p♯(t|s, a) = λ(ϕ(s)) · p(t|s, a)

and

p♯(i♯|s, a) =

{

1 − λ(ϕ(s)) if i = ϕ(s),

0 otherwise .

Let us note by A♯
λ the arena obtained from A in this way. It is worth noticing

that, even if the set of finite histories of A♯
λ strictly contains the set of finite

histories of A, we can identify the strategies in both arenas. In fact, given a
strategy for arena A there is only one possible way to complete it to a strategy



in A♯
λ since for finite histories in A♯

λ that end in a stopping state i♯ any strategy
chooses always the unique action available at i♯. Clearly, playing a stopping
priority game on A is the same as playing priority game on A♯

λ: stopping at

state s in A yields the same payoff as an infinite history in A♯
λ that loops at i♯,

where i = ϕ(s).

5 Discounted Priority Games

The aim of this section is to introduce a new class of infinite games that are
equivalent to stopping priority games.

As previously, we suppose that arenas are equipped with a priority mapping
(1) and that a reward mapping (3) is fixed.

On the other hand, the mapping λ of (5), although also present, has now
another interpretation, it does not define stopping probabilities but it provides
discount factors applied to one-step rewards.

Let
ri = r ◦ ϕi and λi = λ ◦ ϕi, i ∈ N , (6)

be stochastic processes giving respectively the reward and the discount factor at
stage i. Then the payoff mapping uλ : Hω → R of discounted priority games is
defined as

uλ =

∞
∑

i=0

λ0 · · ·λi−1(1 − λi)ri + (
∏

i=0

λi) · r(lim inf
n

ϕn) . (7)

Thus uλ is composed of two parts, the discount part

udisc
λ =

∞
∑

i=0

λ0 · · ·λi−1(1 − λi)ri (8)

and the limit part

ulim
λ = (

∞
∏

i=0

λi) · r(lim inf
n

ϕn) . (9)

Some remarks concerning this definition are in order. Let

T = inf{i | λj = 1 for all j ≥ i} . (10)

Since, by convention, the infimum of the empty set is ∞, {T = ∞} consists of
of all infinite histories h ∈ Hω for which λi < 1 for infinitely many i. Thus we
can rewrite uλ as:

uλ =
∑

i<T

λ0 · · ·λi−1(1 − λi)ri + (
∏

i<T

λi) · r(lim inf
n

ϕn) . (11)

Moreover, if T = ∞ then the product
∏

i<T λi, containing infinitely many factors

smaller than 1, is equal to 0 and for such infinite histories the limit part ulim
λ



disappears while the discount part is (a sum of) an infinite series. The other
extreme case is T = 0, i.e. when the discount factor is 1 for all visited states.
Then it is the the discount part that disappears from 11 and the payoff is just
r(lim infn ϕn), the same as for priority games of Section 3.

Let (A, uλ) be a discounted priority game on A. As explained in the preced-
ing section, a stopping priority game on A with stopping probabilities given by
means of λ can be identified with the priority game (A♯

λ, u) on the transformed

arena A♯
λ. As noted also in the preceding section, there is a natural correspon-

dence allowing to identify strategies in both arenas. We shall note by P
♯s
σ,τ the

probability generated by strategies σ and τ on A♯
λ and P

s
σ,τ the similar probabil-

ity generated by the same strategies on A. The corresponding expectations are
denoted E

♯s
σ,τ and E

s
σ,τ . Having all this facts in mind, the following proposition

shows that stopping priority games and discounted priority games are equivalent
in the sense that the same strategies yield the same payoffs in both games:

Proposition 2. For all strategies σ, τ of players 1, 2 and all states s ∈ S,
E

♯s
σ,τ [u] = E

s
σ,τ [uλ].

Proof. (sketch) Let T = inf{i | Si ∈ S♯} be the first moment in the game (A♯
λ, u)

when we enter a stopping state. Direct calculations show that P
♯s
σ,τ (Si+1 =

si+1|S0 = s0, . . . ,Si = si) = λ(ϕ(si))P
s
σ,τ (Si+1 = si+1|S0 = s0, . . . ,Si =

si) if all states s0, . . . , si, si+1 are not stopping. This can be used to show
that3 E

♯s
σ,τ [u; T = ∞] = E

s
σ,τ [ulim

λ ]. On the other hand, E
♯s
σ,τ [u; T = m] =

E
s
σ,τ [λ0 · · ·λm−1(1 − λm)rm], implying E

♯s
σ,τ [u; T < ∞] = E

s
σ,τ [udisc

λ ].
⊓⊔

We can note that in the special case when all discount factors are strictly
smaller than 1 (i.e. all stopping probabilities are greater than 0) Proposition 2 re-
duces to a well-known folklore fact: stopping (Shapley) games[1] and discounted
games are equivalent.

6 Limits of Priority Discounted Games

The main aim of this section is to prove that discounted priority games (A, uλ)
admit pure stationary optimal strategies for both players. Of course, due to
Shapley’s theorem, we already know that this is true for discounted mappings λ

such that λ(i) < 1 for all priorities i. Our proof will use in an essential way the
concept of uniformly optimal strategies, which is of independent interest.

Let λ1, . . . , λm, 1 ≤ m ≤ k, be a sequence of constants, all belonging to the
right-open interval [0, 1). Let λ be the following discount mapping:

for all i ∈ {1, . . . , k}, λ(i) =

{

λi if i ≤ m,

1 if i > m.
(12)

3 By E
♯s
σ,τ [u; A] we denote the integral of u over the set A.



In the sequel we shall write u
(k)
λ1,...,λm

to denote the discounted priority payoff
mapping uλ, where λ is given by (12). (Note, however, that one should not
confuse λ1, λ2, . . . which are used to denote real numbers from [0, 1) with bold
λ1, λ2, . . . that are used to denote a stochastic process (6)).

Defining u
(k)
λ1,...,λm

we have assumed that m ≥ 1, however it is convenient to
include the case m = 0 in this notation: if m = 0 then λ(i) = 1 for all priorities
i ∈ {1, . . . , k} and thus u(k) is just the priority payoff mapping u of Section 3.

In particular if m = 1 then u
(k)
λ1,...,λm−1

denotes just u(k) = u.

Which strategies are optimal in the game (A, u
(k)
λ1,...,λm

) usually depends heav-
ily on the discount factors λ1, . . . , λm. But, in an important paper [13] Blackwell
observed that in discounted Markov decision processes optimal strategies are
independent of the discount factor if this factor is close to 1. This leads to the
concept of uniformly optimal strategies:

Definition 3. Let A be a finite arena, m ∈ {1, . . . , k}. Let us fix values of the
first m − 1 discount factors λ1, . . . , λm−1 ∈ [0, 1). Strategies σ, τ for players 1,
2 are said to be uniformly optimal for λ1, . . . , λm−1 if there exists an ǫ > 0
(that can depend on λ1, . . . , λm−1) such that σ, τ are optimal for all games

(A, u
(k)
λ1,...,λm−1,λm

) with 1 − ǫ < λm < 1.

Now we are prepared to announce the main result of the paper:

Theorem 4. For each m ∈ {1, . . . , k} the games (A, u
(k)
λ1,...,λm−1,λm

) admit pure

stationary uniformly optimal strategies for both players. Moreover, if (σ♯, τ ♯) is

a pair of such strategies then σ♯, τ ♯ are also optimal in the game (A, u
(k)
λ1,...,λm−1

).

Proposition 5 below establishes the following chain of implications:

if (A, u
(k)
λ1,...,λm

) admits pure stationary optimal strategies then (A, u
(k)
λ1,...,λm

)
admits pure stationary uniformly optimal strategies which in turn implies that

(A, u
(k)
λ1,...,λm−1

) admits pure stationary optimal strategies. Since, by Shapley’s

theorem, (A, u
(k)
λ1,...,λk

) has pure stationary optimal strategies, trivial backward
induction on m will yields immediately Theorem 4.

Proposition 5. Let A be a finite arena with states labelled by priorities from
{1, . . . , k}. Let m ∈ {1, . . . , k} and λ1, . . . , λm−1 be a sequence of discount factors
for priorities 1, . . . , m, all belonging to the interval [0, 1). Suppose that the game

(A, u
(k)
λ1,...,λm

) has pure stationary strategies for both players. Then the following
conditions hold:

(i) for both players there exist pure stationary uniformly optimal strategies in

the game (A, u
(k)
λ1,...,λm−1,λm

),

(ii) there exists an ǫ > 0 such that, for each pair of pure stationary strategies
(σ, τ) for players 1 and 2, whenever σ and τ are optimal in the game

(A, u
(k)
λ1,...,λm−1,λm

) for some 1 − ǫ < λm < 1 then σ and τ optimal for all

games (A, u
(k)
λ1,...,λm−1,λm

) with 1 − ǫ < λm < 1, in particular σ and τ are
uniformly optimal,



(iii) if σ, τ are pure stationary uniformly optimal strategies in the game (A, u
(k)
λ1,...,λm

)

then they are optimal in the game (A, u
(k)
λ1,...,λm−1

),

(iv) limλm↑1 vals(A, u
(k)
λ1,...,λm

) = vals(A, u
(k)
λ1,...,λm−1

), where vals(A, u
(k)
λ1,...,λm

)

is the value of the game (A, u
(k)
λ1,...,λm

) for an initial state s.

We precede the proof of Proposition 5 by auxiliary lemmas.

Lemma 6. Suppose that λ1, . . . , λk, the discount factors for all priorities, are
strictly smaller than 1. Let σ, τ be pure stationary strategies for players 1 and

2 in the game (A, u
(k)
λ1,...,λk

). Then the expectation E
s
σ,τ [u

(k)
λ1,...,λk

] is a rational

function of λ1, . . . , λn bounded on [0, 1)k.

In fact, if we fix pure stationary strategies then we get a finite Markov chain
with discounted evaluation. In this context Lemma 6 is standard, at least for
one discount factor, see for example [14], and the extension to several discount
factors is trivial.

The lack of space compels us to skip the the proof of the following (intuitively
obvious) lemma:

Lemma 7. Let f(x1, . . . , xk) be a rational function well-defined and bounded on
[0, 1)k. Then, for each 0 ≤ m < k, the iterated limit limxm+1↑1 . . . limxk↑1 f(x1, . . . , xk)
exists and is finite. Moreover, for every fixed (x1, . . . , xm−1) ∈ [0, 1)m−1 there
exists ǫ > 0 such that the one-variable mapping

xm 7→ lim
xm+1↑1

. . . lim
xk↑1

f(x1, . . . , xm−1, xm, xm+1, . . . , xk)

is rational on the interval [1 − ε, 1).

For any infinite history h ∈ Hω the value u
(k)
λ1,...,λm

(h) can be seen as a
function of discount factors λ1, . . . , λm. It turns out that

Lemma 8. For each m ∈ {1, . . . , k} and for each h ∈ Hω,

lim
λm↑1

u
(k)
λ1,...,λm

(h) = u
(k)
λ1,...,λm−1

(h) . (13)

Proof. (Sketch) Let u
(k)
λ1,...,λm

= udisc
λ1,...,λm

+ ulim
λ1,...,λm

be the decomposition of

u
(k)
λ1,...,λm

onto the discount and limit parts. Let λ and λ⋆ be discount factor
mappings from {1, . . . , k} into [0, 1] such that for i ∈ {1, . . . , k}, λ(i) = λi for
i ≤ m and λ(i) = 1 for i > m, while λ⋆(i) = λ(i) for i 6= m and λ⋆(i) = 1 for
i = m. As usually, λi = λ◦ϕi and λ⋆

i = λ⋆ ◦ϕi are the corresponding stochastic
processes.

We examine three cases:
Case 1: m < lim infi ϕi(h).

In this case, all priorities appearing infinitely often in the sequence ϕi(h), i =



0, 1, . . . have the corresponding discount factors equal to 1. Thus T (h) = min{j |
λl(h) = 1 for all l ≥ j} is finite. Then limλm↑1 udisc

λ1,...,λm
(h) = udisc

λ1,...,λm−1
(h)

since udisc
λ1,...,λm

(h) is just a polynomial of variables λ1, . . . , λm. Similarly,

limλm↑1 ulim
λ1,...,λm

(h) = ulim
λ1,...,λm−1

(h), and we get (13).

Case 2: m = lim infi ϕi(h).
Since for infinitely many i, λi(h) = λm < 1, we have

∏∞
i=0 λi(h) = 0, and then

ulim
λ1,...,λm

(h) = 0.
Let T0(h) := maxj{ϕj(h) < m} be the last moment when a priority strictly

smaller than m appears in the sequence ϕi(h), i ∈ N, of visited priorities. No-
tice that T0(h) < ∞ and

∑

0≤l≤T0(h) λ0(h) · · ·λl−1(h)(1 − λl(h))rl(h) −−−→
λm↑1

udisc
λ1,...,λm−1

(h). On the other hand,
∑∞

l=T0(h)+1 λ0(h) · · ·λl−1(h)(1−λl(h))rl(h) =

(
∏T0(h)

j=0 λj(h)) ·
∑∞

l=0(λm)l(1 − λm)r(m) = (
∏T0(h)

j=0 λj(h)) · r(m) −−−→
λm↑1

(
∏T0(h)

j=0 λ⋆
j (h))r(m) = (

∏∞
j=0 λ⋆

j (h))r(lim inf i ϕi(h)) = ulim
λ1,...,λm−1

(h). Thus we

have shown that limλm↑1 udisc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h) + ulim
λ1,...,λm−1

(h).

Case 3: m > lim infi ϕi(h).
Since m > m− 1 ≥ lim infi ϕi(h) both ulim

λ1,...,λm
(h) and ulim

λ1,...,λm−1
(h) are equal

to 0. Thus it suffices to show that

lim
λm↑1

udisc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h) . (14)

For a subset Z of N set fZ(λ1, . . . , λm) =
∑

i∈Z(1−λi(h))λ0(h) · · ·λi−1(h)ri(h)
and consider fX(λ1, . . . , λm) and fY (λ1, . . . , λm), where X = {i | ϕi(h) =
m} and Y = N \ X . We show that

lim
λm↑1

fX(λ1, . . . , λm) = 0 . (15)

This is obvious if X is finite, thus assume X infinite. Define a process Ti:
T0(h) = −1, Ti+1(h) = min{j | j > Ti(h) and ϕj(h) = m}. Thus Ti(h), i =
1, 2, . . ., gives the time of the i-th visit to a state with priority m. Set p(h) =

lim infi ϕi(h) and define another process4: Wi(h) =
∑Ti(h)−1

j=0 1{ϕj(h)=p(h)}. Thus
Wi(h) gives the number states with priority p(h) that were visited prior to
the moment Ti(h). Notice that, for all i ≥ 1, λ0(h) . . . λTi(h)−1 contains i −
1 factors λm and Wi(h) factors λp(h) (and possibly other discount factors)

whence λ0(h) . . . λTi(h)−1 ≤ (λm)i−1(λp(h))
Wi(h) implying fX(λ1, . . . , λm) =

(1−λm)r(m)
∑∞

i=0 λ0(h) . . . λTi(h)−1(h) ≤ (1−λm)r(m)
∑∞

i=0(λp(h))
Wi+1(h)(λm)i−1.

Now notice that limi→∞ Wi(h) = ∞ since p(h) is visited infinitely often in h.
Since p(h) < m, we have λp(h) < 1 and limi→∞(λp(h))

Wi+1(h) = 0. This implies
easily (15) (applying the well-know and easy fact that summable series are Abel
summable, [15]).

Now let us examine fY (λ1, . . . , λm).
Note that fY (λ1, . . . , λm−1, 1) = udisc

λ1,...,λm−1
(h). Then limλm↑1 fY (λ1, . . . , λm) =

4 We use the usual notation, 1A is the indicator function of an event A, 1A(h) = 1 if
H

ω
∋ h ∈ A and 1A(h) = 0 otherwise.



fY (λ1, . . . , λm−1, 1) follows directly from the well-know Abel’s lemma for power
series, see [15]. This and (15) yield (14). ⊓⊔

Proof of Proposition 5. Since the payoff mappings u
(k)
λ1,...,λi+1

are bounded and
Borel-measurable, Lebesgue’s dominated convergence theorem and Lemma 8 im-

ply that for all strategies σ and τ for players 1 and 2, limλi+1↑1 E
s
σ,τ (u

(k)
λ1,...,λi+1

) =

E
s
σ,τ (limλi+1↑1 u

(k)
λ1,...,λi+1

) = E
s
σ,τ (u

(k)
λ1,...,λi

). Iterating, we get

lim
λm+1↑1

. . . lim
λk↑1

E
s
σ,τ (u

(k)
λ1,...,λk

) = E
s
σ,τ (u

(k)
λ1,...,λm

) . (16)

Suppose that strategies σ and τ are pure stationary. Then, by Lemma 6,

the mapping [0, 1)k ∋ (λ1, . . . , λk) 7→ E
s
σ,τ (u

(k)
λ1,...,λk

) is rational and bounded.
Lemma 7 applied to the left hand side of (16) allows us to deduce that, for fixed
λ1, . . . , λm−1, the mapping

(0, 1) ∋ λm 7→ E
s
σ,τ (u

(k)
λ1,...,λm−1,λm

) (17)

is a rational mapping (of λm) for λm sufficiently close to 1.
For pure stationary strategies σ and σ♯ for player 1 and τ , τ ♯ for player 2

and fixed discount factors λ1, . . . , λm−1 we consider the mapping

[0, 1) ∋ λm 7→ Φσ♯,τ♯,σ,τ (λm) := E
s
σ♯,τ♯(u

(k)
λ1,...,λm−1,λm

) − E
s
σ,τ (u

(k)
λ1,...,λm−1,λm

) .

As a difference of rational mappings, all mappings Φσ♯,τ♯,σ,τ are rational for λm

sufficiently close to 1. Since rational mappings are continuous and have finitely
many zeros, for each Φσ♯,τ♯,σ,τ we can find ǫ > 0 such that Φσ♯,τ♯,σ,τ does not
change the sign for 1 − ǫ < λm < 1, i.e. ∀λm ∈ (1 − ǫ, 1),

Φσ♯,τ♯,σ,τ (λm) ≥ 0, or Φσ♯,τ♯,σ,τ (λm) = 0, or Φσ♯,τ♯,σ,τ (λm) ≤ 0 . (18)

Moreover, since there is only a finite number of pure stationary strategies, we can
choose in (18) the same ǫ for all mappings Φσ♯,τ♯,σ,τ , where σ, σ♯ range over pure
stationary strategies of player 1 while τ, τ ♯ range over pure stationary strategies
of player 2.

Suppose that σ♯, τ ♯ are optimal pure stationary strategies in the game

(A, u
(k)
λ1,...,λm−1,λm

) for some λm ∈ (1 − ǫ, 1). This means that for all strategies
σ, τ for both players

E
s
σ,τ♯(u

(k)
λ1,...,λm−1,λm

) ≤ E
s
σ♯,τ♯(u

(k)
λ1,...,λm−1,λm

) ≤ E
s
σ♯,τ (u

(k)
λ1,...,λm−1,λm

) . (19)

For pure stationary strategies σ, τ , Eq. (19) is equivalent with Φσ♯,τ♯,σ,τ♯(λm) ≥ 0
and Φσ♯,τ♯,σ♯,τ (λm) ≤ 0. However, if these two inequalities are satisfied for some
λm in (1 − ǫ, 1) then they are satisfied for all such λm, i.e. (19) holds for all λm

in (1− ǫ, 1) for all all pure stationary strategies σ, τ . (Thus we have proved that
σ♯ and τ ♯ are optimal for all λm ∈ (1 − ǫ, 1) but only if we restrict ourselves
to the class of pure stationary strategies.) But we have assumed that for each



λm the game (A, u
(k)
λ1,...,λm−1,λm

) has optimal pure stationary strategies (now we

take into account all strategies), and under this assumption it is straightforward
to prove that if (19) holds for all pure stationary strategies σ, τ then it holds
for all strategies σ, τ , i.e. σ♯ and τ ♯ are optimal in the class of all strategies
and for all λm ∈ (1 − ǫ, 1). In this way we have proved conditions (i) and (ii) of
Proposition 5.

Applying the limit λm ↑ 1 to (19) and taking into account (16) we get

E
s
σ,τ♯(u

(k)
λ1,...,λm−1−1,λm−1

) ≤ E
s
σ♯,τ♯(u

(k)
λ1,...,λm−1−1,λm−1

) ≤ E
s
σ♯,τ (u

(k)
λ1,...,λm−1e−1,λm−1e

) ,

which proves (iii). It is obvious that this implies also (iv). ⊓⊔
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