Reprinted from INFORMATION AND COMPUTATION Vol. 106, No. 2, October 1993
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Asynchronous Mappings and
Asynchronous Cellular Automata

RoOBERT CoORI*

Laboratoire Bordelais de Recherche en Informatique,” Université Bordeaux—1,
351, cours de la Libération, 33405 Talence Cedex, France

YVES METIVIER *

Laboratoire Bordelais de Recherche en Informatique," ENSERB,
351, cours de la Libération, 33405 Talence Cedex, France

AND
WIESLAW ZIELONKA

Laboratoire Bordelais de Recherche en Informatique,® Université Bordeaux—1,
351, cours de la Libération, 33405 Talence Cedex, France

_The aim of this paper is the study of asynchronous automata, a special kind of
automata which encode the independency relation between actions and which
enable their concurrent execution. These automata, introduced by Zielonka
(RAIRO Inform. Theor. Appl. 21, 99-135 (1987)), constitute a natural extension of
finite automata to the case of asynchronous parallelism. Their behaviour is
described by trace languages, subsets of partially commutative monoids. The main
result concerning this class of automata states that they accept exactly all
recognizable trace languages. In this paper we give new improved constructions of
asynchronous automata. In the final part of the paper we present a distributed
system of messages with bounded time-stamps based on asynchronous automata.
@© 1993 Academic Press, Inc.

INTRODUCTION

Many different mathematical models have been introduced to express
concurrency; let us mention Petri nets (Reisig, 1982), CSP (Brookes
et al, 1984), and CCS (Milner, 1983) as the most popular examples.
Among these models we can distinguish machine-oriented models, where

* With the support of the P.R.C. Mathématiques et Informatique and the European project
EBRA 3166—ASMICS.
T URA CNRS 1304.

159

NRAN_SA4AN1 /02 €5 N0

160 CORI, METIVIER, AND ZIELONKA

a concurrent system is represented by a device with a possibility of
concurrent execution of actions. Finally, the machine-oriented models of
concurrency can be divided into two classes, synchronous and asynchro-
nous machines; in the first class we can find for instance systolic systems
(Conway and Mead, 1980) and cellular automata (von Neumann, 1966)
in the second Petri nets.

There are also many different semantics of concurrency. But in the
simplest non-interleaving setting the behaviour of concurrent asynchronous
systems is given by a partial order of actions, where two instances of
actions are incomparable if they are causally independent. Partially ordered
sets and operations over them are rather cumbersome to handle algebrai-
cally. This obstacle was circumvented to some extent in Mazurkiewicz’s
paper (1977). He proposed to describe the behaviour of concurrent systems
with a fixed independency relation between actions by means of partially
commutative monoids.

Although elements of these monoids, called traces, can be interpreted as
labelled partial orders, this representation is almost never used in practice,
because traces have also other interpretations much more convenient in
use. Let us notice that the concept of partially commutative monoid was
introduced earlier by Cartier and Foata (1969) for purely combinatorial
purposes. Now the theory of partially commutative monoids is growing
rapidly mainly in relationship to various aspects of concurrency:
Aalbersberg and Rozenberg (1986), Bertoni ez al. (1989), Choffrut (1986),
Cori and Perrin (1985), Flé and Roucairol (1985), Gastin and Rozoy
(1991), Mazurkiewicz (1984), Métivier (1986, 1987), Ochmanski (1985),
Perrin (1989), Sakarovitch (1987), Viennot (1987), Zielonka (1987), and
Diekert (1990). In this paper we examine these monoids in connection with
automata theory.

As it turns out, nets used in Mazurkiewicz’s original paper (1977) to
model concurrent systems suffer from a weakness; they are able to accept
only a proper subclass of recognizable trace languages.

A new model, asynchronous finite automata, more suited for recognition
of traces was introduced by Zielonka (1987). Although asynchronous
automata relate closely to other machine-like models such as Petri nets or
a model presented by Karp and Miller (1969), they fit much better the
framework of classical automata theory. In fact, they may be viewed as
finite automata with a decentralized control structure that allows
concurrent execution of some actions. They also provide a remedy for the
deficiency of Mazurkiewicz’s model since the main result of Zielonka
(1987) shows that they accept exactly all recognizable trace languages.
Various aspects of asynchronous automata were next examined in a series
of papers: Bruschi er al. (1988), Cori et al. (1988), Cori and Métivier
(1988), Métivier (1987), Perrin (1989), and Zielonka (1989). As a recent

»

ASYNCHRONOUS CELLULAR AUTOMATA 161

interesting application of asynchronous automata, let us mention also
a paper of Thomas (1990) where old results due to Biichi and Elgot
concerning definability of words in monadic second order logic are
extended to traces.

The construction of asynchronous automata presented in Zielonka
(1987) is quite opaque and difficult to follow. The aim of this paperJs to
reconsider it in a more systematic way using an algebraic framework.
Exploiting some new ideas, partly introduced by Cori and Métivier (1988),
we are able to simplify considerably both the construction and its presenta-
tion, reducing also the number of states of the resulting automaton.

In fact, we even give two partly independent constructions. We have
chosen to construct cellular asynchronous automata defined in Zielonka
(1989) rather than the original asynchronous automata of Zielonka (1987).
The reason is that the cellar asynchronous automata seem to constitute a
more fundamental object, in fact they can be transformed immediately to
asynchronous automata, while the inverse transformation, although
possible, is not so trivial.

As an intermediate step of the construction of asynchronous cellular
automata, we use so-called asynchronous mappings. The concept of
asynchronous mapping turns out to be very useful. This fundamental
notion captures in an algebraic and machine-independent way the idea of
distributed recognizability of traces languages.

Our paper is organized as follows. In Section1 we recall the basic
notions concerning partially commutative monoids, recognizable sets, and
we define the main object of the paper: asynchronous cellular automaton.
In Sections 2 and 3 we study combinatorial properties of the prefix order
for traces. In Section4 we introduce the new fundamental notion of
asynchronous mapping. We show that, given an asynchronous mapping, a
corresponding asynchronous cellular automaton can easily be constructed.
Thus in the remainder of the paper we concentrate our efforts on the
construction of asynchronous mappings.

First nontrivial asynchronous mapping is built in Section 4. It has very
nice properties and gives rise to a cellular asynchronous automaton which,
intuitively, “recognizes” the prefix order of actions in traces. In Section 5
we achieve the construction of an asynchronous mapping recognizing a
given trace language T in fact we give two independent constructions, both
of them based on the mapping built in Section 4.

In Section 6 we present an interesting application of the asynchronous
mapping of Section 4. We consider there a distributed system with agents
communicating by means of messages left in boxes and show how to
construct a bounded time-stamp system in this case. Note that the problem
of constructing bounded time-stamp systems is usually very difficult and

162 CORI, METIVIER, AND ZIELONKA

solutions need ingenious ideas; see, for example, Li and Vitanyi (1989) for
another such system.

1. PRELIMINARIES

In this section we introduce the basic notions of traces, recognizable
subsets of traces, and asynchronous cellular automata that will be used in
this paper.

We use the standard mathematical notations. In particular, for any sets
X, Y, by Z(X) we denote the family of all subsets of X and by F(X; Y) we
denote the family of all partial mappings from X to Y. For the notions of
formal language theory we follow in general Eilenberg (1974).

Let A4 be a finite alphabet, its elements are called letters or actions. Then
A* is the set of all words over 4. Formally, A* with the concatenation
operation forms the free monoid with the set of generators 4 and where the
empty word ¢ plays the role of the unit element. For any word x of 4*, |x|
denotes the length of x, |x|, denotes the number of occurrences of a letter
a in x, and for any subsct x of 4, |x|, denotes the length of the word
obtained from x by deleting all the letters which are not in «
(Ixls=2,c, |¥|,). The notation alph(x)= {aeA]||x|,#0} is used to
denote the set of letters of A4 actually appearing in the word x.

A. Traces

Let A be a finite alphabet. Throughout the paper @ is a symmetric and
irreflexive relation over the alphabet A4, called the independency relation.
Two actions a and b such that (q, £)e® are considered independent.
Intuitively, this means that ¢ and & act on disjoint sets of resources and the
order in which they are performed does not matter; they can even be
performed simultaneously. The complement @ =A4x A\@ of @ is the
dependency relation: two actions a and b such that (a, b) ¢ @ are dependent
and cannot be executed simuitaneously. For any letter a of 4, &(a) denotes
the set of letters which depend on «:

Bla)={beA|(a b)¢O)

Note that since @ is irreflexive, ae @(a). We extend this notation by
setting, for any o < A4,

BO(a)={be Al3aeo such that (a, b)e O}

The relation @ induces an equivalence relation ~, over A*: two words x
and y are equivalent under ~g, denoted by x~g y, if there exists a

—

ASYNCHRONOUS CELLULAR AUTOMATA 163

sequence z,, Z,, .., z; of words such that x=2z,, y=z,, and for all j,
1 <i<k, there exist words u;, v;, and letters a,, b, satisfying

z;=u,a;bv, zi 1 =ubav, and (a;, b;)eb.

[Rl ¥ 2 e

Thus two words are equivalent by ~, if one can be obtained from the
other by successive transpositions of neighbouring independent actions. It
is easy to verify that ~g is the least congruence over A* such that
ab ~ 4 ba for each pair (g, b) e ©. The quotient of A* by the congruence
~ g is the free partially commutative monoid induced by the relation @, it
is denoted by M(A4, ®). The elements of M(A4, @), which are equivalence
classes of words of 4* under the relation ~, are cailed traces. For a word
x of A*, [x]e denotes the equivalence class of x under ~4. Since the
relation ~4 is a congruence, the composition operation in M(4, @) is
given by

Vx, ye A* [x]le[y]e=[xy]e-

For the sake of simplicity, the equivalence class [a]g of a letter a of A will
be denoted by a in the sequel. Similarly, the unit element of M(4, @) (ie.,
the equivalence class of the empty word, [¢]e) will be denoted by &. It is
obvious that any two elements x and y of 4* such that [x]e=[y], differ
only by the order in which the letters appear; therefore it is possible to
define for a trace t = [x] g of M(A, @) the length |¢| = |x| of ¢, the number
[t|],= x|, of occurrences of the letter a in ¢, the set alph(r)=alph(x) of
letters appearing in ¢, and if x = A, then [7], =3 ., ||,

Two traces u and v of M(A, @) are said to be independent and this fact
is denoted by u®v if

alph(u) x alph(v) € €.
Note that this is equivalent to the following conditions:
uv = vu and alph(u) nalph(v) = .

A trace p is a prefix of a trace ¢ if 1= pr for some trace r; in such a case
r is a suffix of 7. The prefix relation is an order relation and it will be
denoted by =<{; u=<{v means that u is a prefix of v, and u<v means that
u is a proper prefix of v (i.e., v is a prefix of v different from v).

The following important result characterizing factorizations of traces was
proved in Mazurkiewicz (1984) and in Cori and Perrin (1985). It will often
be used in Section 2.

PROPOSITION 1.1. Let 1, u, v, w be traces of M(A, @) such that tu=ow.
Then there exist unique traces t,, t,, I3, ty Such that

t=1t1,, u=1tst,, V=115, w=1t,t4, and 1,015,

164 CORI, METIVIER, AND ZIELONKA

COROLLARY 1.2. The monoid M(A, @) is cancellative; i.e.,
Yu, v, we M(A4, O) uw=uw=v=w,

VU =WU=V=W.

Traces admit numerous different representations. We present here two of
them which, although not used explicitly in our paper, may provide the
reader with useful intuitions.

A dependency graph over (4, @) is a triple (V, E, 1), where (V, E) is
a finite acyclic graph and Ai: V> 4 is a vertex labelling verifying the
following condition: for all v,, v, V,

vi#Foy and (A(vy), A(v,)) ¢ O <= (vy, ;)€ E or (vy, vy) € E.

Traces can be identified with (classes of isomorphisms of) dependence
graphs. If (V, E, 1) is a dependence graph then the corresponding trace ¢ of
M(4, ©) is given by

t={A(x)|x is a list of the vertices of the graph (V, E)
sorted topologically }.

On the other hand, with each word we 4* we can associate a dependence
graph D(w) defined by

D(e)=(D, &, D);

if w#e then D(w)=(V,E, 1), where V=/{1,..,|w|},
VieV, A(i)=ith letter of w, E={(i, j))e V?|i<j and
(400, A()) ¢ O}

Then for any words x, ye A*, x~¢ y if and only if D(x) and D(y) are
isomorphic. Moreover, the set of dependence graphs can be equipped with
a suitable composition operation.

Note that in this representation, if we have a dependence graph
D(t)=(V, E, 1) of a trace ¢ of M(A, @) then a trace r is a prefix of ¢ if and
only if there exists a subset ¥’ of V that is backward closed under F (ie.,
such that whenever (v,, v,)€ E and v, V' then v, € V') and such that the
subgraph (V', En(V'x V'), 4,.) of D(z) induced by V' is (isomorphic
with) a dependence graph of r.

The second representation of a trace ¢ by a labelled partial order is
obtained from the dependence graph D(7)=(V, E,) of ¢ by taking the
transitive closure E* of E. Intuitively two distinct events v,,v,e ¥
are interpreted as causally independent if neither (v,,v,)e E* nor
(v2,v,)e E™, while (v,,v,)€e E* means that the event v, precedes the
event v,. Moreover, each event ve ¥ is an occurrence of the action A(v).

ASYNCHRONOUS CELLULAR AUTOMATA 165

FIGURE 1.

Figure 1 gives the dependence graph D(¢) of the trace t= [abadceb],,
where © = {(a, b), (b, a), (d, ¢), (c,d), (e, a), (a,e), (b, e), (e,b)}. We see
that, for instance, the second occurrence of « is independent of the first
occurrence of b but it precedes the second occurrence of 4.

B. Recognizable Trace Languages

By analogy with the theory of formal languages the subsets of M(4, @)
are called trace languages. We recall the following basic facts from
Eilenberg (1974).

Let M be a monoid with the unit element ¢, a subset T of M is said to
be recognizable if there exists a homomorphism from M into a finite
monoid H such that T= f~(G) for some subset G of H.

For a monoid M, an M-automaton & = (M, Q, J, g,, F) consists of a
finite set Q of states, an initial state go€ Q, a subset F of @ of final states
and a transition function § from Q x M into Q satisfying the following
conditions:

VgeQ (g 8)=g
Yge Q, Vm, m,eM 3(q, m m;)=3d(d(q, m,), m,).
The subset T of M recognized by the automaton .« is defined by
T={meM|d(qy, m)e F}.

The following result is classical (Eilenberg, 1974) and easy to prove.

PROPOSITION 1.3. A4 subset T of M is recognizable if and only if there
exists an M-automaton which recognizes it.

From now on we assume that the monoid M is the trace monoid
M{(A, O). For any subset L of 4*, [L], is the subset of M(A4, @) consisting
of the traces generated by elements of L:

[L]lo={te M(4, ©)|3xe L such that [x]o=1}.

166 CORI, METIVIER, AND ZIELONKA

Conversely, for any subset Tof M (A4, @)theset [T]o' = {xe4*|[x]oe T}
consists of the words which represent traces from 7. The following easy
proposition characterizes recognizable subsets of M(A4, @):

PROPOSITION 1.4. A subset T of M(A, @) is recognizable if and only if
[(T1g" is a recognizable subset of A*.

Let o/ =(4, 0.0, gy, F) be an A*-automaton and let @ be an inde-
pendency relation. ./ is said to be ©-compatible if for any words x and y,

N~ V= vqe Q 5(% .Y) = 5(‘]»)’)<

Note that it suffices to verify the preceding property for words of length 2;
namely, ./ is @-compatible if and only if for any a, be A4,

(a,b)e @ =Vge Q 5(gq, ab)=4(q, ba).

A O-compatible automaton ./ may be considered as an M(4, @)-
automaton, since for any two equivalent words x and y, and for any state
g we have (g, x) =3(q, »). This makes it possible to extend & for traces by
setting d(q, 1) =4(q, x), for all re M(4, @) and xe 4* such that [x]g=1
As it is easy to verify we then have d(q, st} =68(8(q, s) ¢) for all ge Q and
5, 1€ M(A, O).

C. Asynchronous Cellular Automata

Asynchronous cellular automata, which we introduce in this section,
may be viewed as ordinary finite automata but with an internal structure
of states resembling the structure of the cellular automata (von Neumann,
1966). The property making them different from the usual cellular
automata is that they have decentralized control structure and they
perform actions asynchronously. We begin with an informal introduction.
Let A be a finite alphabet and @ an independency relation. Let % be the
dependency graph associated with the corresponding dependency relation
6 whose vertices are letters of 4 and whose edges are the pairs of distinct
non-commuting letters. With every vertex ae A of 4 there are associated
an agent, a transition mapping J,, and a value, called a state, from a finite
set X. If the agent ¢ makes an action then it examines the states of all its
neighbours from @(a) and changes its own state (i.e., value) in accordance
with its transition mapping 3,. This single action is considered as atomic,
which implies that two neighbouring agents cannot act simultaneously.
Recall that F(X; Y) denotes the set of all mappings from X into Y.

DerINITION. A deterministic asynchronous cellular automaton A over
M(4, @) is given by a finite set X of basic states, a family {3,|ae 4} of

ASYNCHRONOQUS CELLULAR AUTOMATA 167

transitions mappings, where for every ac 4, d, is a partial mapping from
F(@(a); X) into X, an initial state soe F(4;X), a set of final states
Fce F(4; X).

Let S denote the set F(A4; X). The elements of S are called global states
of A. For any se S and for any « € 4, by s{, we denote the restriction of
s to the set o (ie., s|, € F(x; X) is such that Yaea, s|,(a)=s(a)).

To describe the sequential behaviour of the asynchronous cellular
automaton, we introduce the global transition mapping 4 from Sx A
into S.

DeFINITION. Let s, 5'€ S and ac A, then A(s, a)=5"if s'(a) =0,(5|(a))
and Yhe A\{a}, s'(b)=s(b).

The mapping 4 is extended to Sx A* in the standard way. Note that
o =(A4, S, 4,5y, F) is an ordinary 4*-automaton, and

Y(a, b)e O, ¥se S A(s, ab) = A(s, ba).

Thus =/ is @-compatible and we can extend the global transition mapping
to traces by setting 4(s, t) = 4(s, x), where xe A* is such that [x]e=1,
and the trace language recognized by the celiular asynchronous automaton
Ais

T(A)= {te M(4, 8)|A(sy,)€ F}.
It is clear directly from the definition that the trace language T(A)
recognized by an asynchronous cellular automaton A4 is a recognizable

subset of M(A4, @). The aim of this paper is to prove that also the inverse
holds:

THEOREM. For every recognizable subset T of M(A, @) there exists a
deterministic asynchronous cellular automaton A over M(A, @) recognizing T.

The theorem presented above seems to be very natural but it is by no
means trivial. The reader may try to construct an asynchronous cellular

" automaton recognizing the following trace language:

T=[({(a+c)b+d))*]e, where @ = {(a, c), (c, a), (b, d), (d, b)}.

The usual minimal M(A4, @)-automaton recognizing T has only two states
but the least known asynchronous cellular automaton recognizing T has
more than a hundred of global states.

Asynchronous cellular auomata relate closely to the usual cellular
automata. The set A4 of vertices of the graph % corresponds to the set of
cells. In the cellular automata the connection pattern is usually regular,

168 CORI, METIVIER, AND ZIELONKA

a b

FiGURe 2.

(e.g., this can be a grid and they can work in the synchronized mode),
while in the case of the asynchronous cellular automata the connection
pattern is given by the graph ¢ of the dependency relation @ and actions
are executed asynchronously.

EXAMPLE. Let A= {a,b,¢,d}, @={(a, ¢), (c,a), (b, d), (d, b)}. Figure 2
shows the corresponding dependency graph 4.

We present an asynchronous automaton A recognizing the trace
language T'=[(achd)* (bud)]e. As the set of basic states we take
X=1{0,1,2}. Now note that all transition mappings J,, ue€ A, have dif-
ferent domains. For convenience we introduce notation making it possible
to present them in a uniform way. Let £ be a special symbol not in X, and
let Y=Xu {#}. Let ued, re F(O(u); X) and xeX. Then the fact that
0,(r)=x will be denoted as s — s', where s, 5" € F(A; Y) are defined in the
following way: for all ve 4,

(= if véO(u),
S(U)_{r(v) if veB(u),

s’(v)—{ﬁ if v#u,

X if v=u
Moreover, each element se F(A4; Y) will be identified with the quadruple
(s(a), s(b), s(c), s(d))

of values of Y (in particular each global state se F{4;X) will be
represented by a quadruple with all components in X).

For example, if re F({a, b, d}; X) is such that r(a)=r(h)=r(d)=0 and
d,(r)=1 then this fact is represented by

(0,0,20)—> (L # £ %)

ASYNCHRONOUS CELLULAR AUTOMATA 169

According to the intuitive ideas that were introduced earlier this rule means
that if the basic states of all the agents a, b, d are equal to O then a can
change its own basic state to 1. The sharp symbol at the third component
of the first quadruple of the rule means that the basic state of ¢ is irrelevant
(@ has no access to this state upon reading). The sharp symbols in the
second quadruple of the rule mean that a has no access to the local states
of b, ¢, and d upon writing. In this notation, transition mappings of A are
given by the following set of rules:

0,0,4,0)—> (£, £.2) (£0,0,00—> (£.4 1, %)
LLE D=5 0.£.42), &LLD—>(£404),
0,0,0,%)—> (£.2.£.%), (0.£.0,00=5 (£, 4. £ 2),
(LO, L)~ (£ L.£4%)., (L£10)-5 (544 1),
0,1,0,2)—> (#,0,£,%), (0,£0,1)~5 (£4,40),
(LLLE - #2458, (LELD—D (& 4.42)

The initial state of A is equal s,=(0, 0, 0, 0) and we have four final states
F=1{(0,2,0,0), (0,0,0,2), (1,2, 1,1), (1,1, 1,2) }.

Figure 3 gives the transition diagram of the underlying finite automaton
(only the states accessibie from the initial state are presented). Let us note
the presence of two states (0, 2,0, 2) and (1, 2, 1, 2) which are accessible
but not co-accessible.

2. PreFix ORDER FOR TRACES

Let us recall that a trace u is a prefix of a trace v if v = uu' for some trace
u', and this is denoted by u=<\v. Obviously, =< defines a partial order
among traces. Properties of the prefix order are more complicated for
traces than for words. The main reasons are that two prefixes of a given
word are always comparable by the prefix order while this is not always
true for traces and that a given trace has in general many more prefixes
than a word of the same length. For instance let t = [a™b*], where a and
b are independent. Let n <m + k be an integer; then for every trace of the
form [a"b™]e, where n, <m, n,<k, n,+n,=nis a prefix of ¢, all these
prefixes have the same length and are pairwise incomparable by the prefix
order.

The aim of this section is to present basic properties of the prefix relation
for traces. Although the results given here are not new, they are presented
with proofs for the sake of completeness. We introduce and examine several
important notions: a-prefixes, prime traces, maximal letters of a trace.

170 CORI, METIVIER, AND ZIELONKA

(0,2,0,2)

A(o,o,o, 1) (0,1,0,0)¢
(1,1,1,0)
*(1.2,1,1)
d
b
b
*(1,1,1,2)
(0,1,1,1)

(0,1,0,1)

FIGURE 3.

Roughly speaking, for a = 4, the a-prefix of a trace ¢, denoted 0,(¢), is
the shortest prefix of containing all letters from « occurring, i.e., such that
10, ($)1,=1t],. A letter a of A is maximal in ¢ if ¢ = ra for some trace r, and
finally ¢ is prime if cither ¢ is empty or it has exactly one maximal letter.
Prime elements are of great importance since each trace is the least upper
bound w.rt. < of prime elements. For a detailed study of the poset
(M(A, ©), <) we refer to Gastin and Rozoy (1991).

A. Basic Results

As in the case of words the least common upper bound u v v w.rt. <
of two traces « and v of M(A4, @) may not exist. The following proposition
gives some necessary and sufficient conditions ensuring the existence of
uwvu.

ASYNCHRONOUS CELLULAR AUTOMATA 171

ProPOSITION 2.1. For any pair u, v of traces, the following statements
are equivalent:

(1) there exists a trace t such that u and v are prefixes of t,

(2) there exist unique traces ty, u', and v’ such that u=tqu', v=1,40,
and 1w GV,

(3) there exists the least common upper bound u v v of u and v wr.t.
the prefix order <.

Moreover, if (2} is satisfied then u v v =ty u'v' and 1, is the greatest common
lower bound u A v of u and v wr.t <.

Proof. (1)=(2). Let t=ut, =vt,. Then by Proposition 1.1 there exist
unique traces ¢y, u', v’, and r such that

u=tyu', v=t,0, t,=v'r, t,=u'r, and u'Ov'.

Hence (2) holds.

(2)=(3). We are going to prove that w=r,u'v’ is the least common
upper bound of u and v. Clearly w=wuv'=vu’ and w is an upper bound of
u and v. To prove that it is the least upper bound suppose that w’ is a trace
such that w'=uv”" =vu” for some u”, v” in M(A4, ®@). By the cancellative
property of M(A, @) we get u'v"=v'u". Again by Proposition 1.1 there
exist unique traces u}, v}, wi, and w5 such that

W =uiwi, v’ =0 wh, v’ =uv], u" =wiwh, and wiOv|.

Since #'@v’ we get u; =¢ and v” = v'w) giving w’ = uv'w; = ww). Hence w is
a prefix of w' and we are done.
(3)=(1). Of course u nd v are prefixes of u v v.

It remains to prove that t, is the greatest common lower bound of u and
v whenever u=1t,u', v="ty’, and ¥'@v’. Obviously ¢, is a lower bound
for u and v. Assume that r is also a lower bound of v and v, then we
get u=tou' =rr' and v=t0 ' =rr", for some traces r’, r”. Hence
tou'v'=rr'v'=rr"u’ and by the cancellative property r'v'=r"u’. Now
Proposition 1.1 applied in the particular case u'@v’ gives r' = wu', r" = wv',
for some trace w. Hence u=rr' =rwu' =1t,u’, and t,=rw entailing r=<t,.
And this ends the proof. |

COROLLARY 2.2. For any set U of traces there always exists the greatest
lower bound of U w.r.t. <.

Proof. Let Pref(U) be the set of all common prefixes for traces from U.
This set is non-empty since it contains at least the empty trace ¢ and it is

172 CORI1, METIVIER, AND ZIELONKA

finite since for each trace u the set Pref(u) of prefixes of u is finite and
Pref(U) =), Pref(u). Now note that, since for each trace u of U
elements of Pref(u) are prefixes of u, Proposition 2.1 ensures that the least
upper bound of the set Pref(U) exists and it is obviously the greatest lower
bound of U. |}

B. a-Prefixes of Traces

In this subsection we define x-prefixes of traces, where « is a subset of 4.
They play a crucial role, in fact they constitute the main tool in
formulations and proofs of basic properties of the prefix order.

For any trace ¢ and for any letter @ we denote by Pref,(¢) the set of
prefixes of 7 having as many occurrences of the letter @ as ¢ has:

Pref (1) = {ue M(4, ©)|u=<(t and |ul,=1],}.

LEMMA 23. The greatest common lower bound of the elements of
Pref {¢) is itself an element of Pref,(1).

Proof. First note that Pref,(7) is not empty since it contains the trace
t itself. Then by Corollary 2.2 it has the greatest common lower bound. We
prove the following assertion which implies the thesis directly:

L, Xt and ltl,=1tl.= 16l = 1t At ,=1],. ()
Indeed by Proposition 2.1 we get 1, =1t,1, t,=tyt3, and r,01,. Note that
itﬁla—’_‘ﬂlla:IIOr/lla:jtl’a:‘IZILl:|t0t’2|a:.t0'a+uf2|a'

Thus [#}],=[t5],, but 7;01; implies that the alphabets of 7/ and ¢, are
disjoint and hence |¢}], = ||, =0. This yields |, A 15}, = |to]|, = It,|,= [25] 4
which proves the assertion (1). |

The previous lemma justifies the following definition.

DEFINITION. Let ¢ be a trace and ac A4; then 6,(z) denotes the least
prefix of 7 such that |¢7,=é,()|,. For any nonempty subset a of 4 we set
0, (t)=V4er 0,(1). If a=F then 0,(1)=¢. The trace d,(r) is called the
a-prefix of ¢,

Note that &,(¢) is always defined since the traces d,(t) for aeo are
prefixes of the trace 7. Moreover, it is easy to verify that d,(z) is the least
prefix of ¢ such that |¢,(¢)[, = |t],.

ExampLe. Let A= {a,b,c,d}, @={(a c), (c,a), (b d),(db)}, and
t=[acabdble. Then &,(1)=[aale, d,(t)=[acabbly, d.(1)=c, B,(t)=
Lacad]g, 04 (1) = [acale.

ASYNCHRONOUS CELLULAR AUTOMATA 173

We begin with a proposition which summarizes some obvious but useful
properties of 0,().

ProPOSITION 2.4. Let o and be nonempty subsets of A and let t and r
be traces of M(A, ©). Then:

(1) 0,(0,(1))=0,(1),

(2) asf=0,(1)=0,(05(1)) = 05(0,(1)) and 0,(1) < 0p(2),
(3) Guvp(n)=0.(1) v 35(2),

4) =0,(t)yr=analph(r)=.

(5) r=xr=0,(r)=<0,(1),

(6) (r=<xtand|tf,=]rl,)=0,(1)=0,(r)<r,

(7) 10.(0)]x= 1],

The next proposition gives a formula allowing us to compute 8, (uv) for
any traces u and v.

PROPOSITION 2.5. For any traces u and v and for any subset o of A we
have

(1) analph(v)= <0, (uw)=20,(u),
(2) O,(uv)=20,. 4(u) 0,(v) where B = @(alph(d,(v))).

Proof. (1) Let analph(v)=(Z; then we get
10, ()], = |uv], = |ul, = |0, (u)] .

Since 0, (u}<Xuv, Proposition 2.4 (6) yields 0,(uv)=0,(u). Conversely,
8, (uv)=0,(u) implies {uv|, = |u|, and o« alph(v)= .

(2) Let p=0O(alph(d,(v))) and r=20,_4(u), r=20,(v). Then u=1r
for some trace " such that [£'|,,=0. Hence

ret, ur=tt'r=1trt', and tr < ur < uv.
From az(u)<aau5(u)<ua we get |u|9z= ‘61(1’{)‘&: |a<xu/3(u)|oz and hence
(3) luv], = [ul, + [0l =10, 0 g (W], + 10, ()] = |tr],.

As tr is a prefix of uv, by (3) and Proposition 2.4 (6) é,(uv) is a prefix of tr.
Now let w be a trace such that

(4) O, (uv) w=tr.

174 CORI, METIVIER, AND ZIELONKA

Since [0, (uwv)|, = |uv|, and 0,(uv)w is a prefix of uv we have |w|,=0.
Applying Proposition 1.1 to (4) we get

O, (uv)=1,t,, W=1t31l,, t=tt;, r=tyt,, and t,0t,.

Clearly, by |w|,=0, we get |74/,=0. Thus |r|,=|t,|, and since r is of the
form J,(v) we have 1,=¢ and r=1¢,. Hence we get rOw and w is a suffix
of t=0,,4(u). Since f=06O(alph(r)) and rOw we get [w];=0 which
together with |w|, =0 implies |w|,_ ;=0. But a suffix of 0, p(u) with this
property is empty; thus w=¢ and (4) gives the required formula. [

PROPOSITION 2.6. For any traces u and v such that the upper bound u v v
exists and for any subset o« of A, 0,(u v v)=20,(u) v 8,(v). Moreover, for
any trace u and any letter a, the set {0,(t)|t=<Xu} is totally ordered by the
prefix relation.

Proof. If u v v exists then by Proposition 2.1
l';:totl, U:t0t2, and t1@t2.

Thus, for any ae A4 either |7,],=0 or |t,|,=0. In the first case 0, (u)=
04(16)<X9,(v) and J,(u v v)=0,(v), in the second case d,(v)=<X0,(u) and
0,(u v v)=0,(u). This proves the second part of Proposition 2.6, and the
first part in the particular case when o contains only one letter.

Now let us suppose that a={a,,a,,.,a.}, then o, (uvv)=
Vic1k0q(uvv) but by the previous result we have 0,(uvv)=
0,(u) v 0,(v) and the result follows from the commutativity of v . |

Remark. The trace d,(u A v) is not necessarily equal to 0, (u) A 0,(v)
as the following example shows:

A={a b, c,d}, 0=y, u=abca, v=abda, unv=ab,
O0.(u Av)y=a, 0, (u)=u, 0,(v)=v, and 0,(u) A 0,(v)=ab.

CoRrROLLARY 2.7. For any trace t, any letter a, and any subset o of A we
have

6a(aa(t)) = Max{aa(ab(t)”bea},

where this maximum is taken for the prefix order <.
Moreover, for any letter ¢ such that 0.(1)<0,(t) there exists a letter b of
o such that 0.(t)=03,(0,(1)).

Proof. We have 0,(t1) = \/,e, 0,(¢); thus, by Proposition 2.6
04(0,(1)) =V e, 0,(0,(1)) and as the traces 6,(¢), bea, are prefixes of ¢,
also by Proposition 2.6 the set {0,(d,(¢))|bea} is totally ordered by the

ASYNCHRONOUS CELLULAR AUTOMATA 175

prefix order and its least upper bound is its maximal element. Now let
0.(1)<X0,(1)<t; applying Proposition 2.4 (5) we get 0,.(¢)=<0.(0,(1))<
0.(t), hence ¢.(t)=0.(0,(¢)). Using the first part of this corollary we finish
the proof. |

C. Prime Elements of M(A, @) and Maximal Letters of a Trace
Now we define the subset Pr(4, ©) of prime elements of M(A, @).

DEFINITION. Pr(A4, 0)={0,(t)|te M(A4, ®) and aec A}.

Note that re Pr(4, @) if and only if there exists a letter a such that
r=0,(r) and if r # ¢ then this letter a is unique. Since for any trace ¢ we
have t =0 ,(¢)=V,c 4 0,(1), the set Pr(A4, @) generates M(A, @) by means
of the operation v . Moreover, this is the least set with this property since
it can be proved (Gastin and Rozoy, 1991) that for any re Pr(4, ©) if
r=t;Vvi,v --- v, then for at least one i, 1 <i<k, r=t,.

For every trace ¢t we distinguish the set Max(#) consisting of the letters
a for which there exists the factorization ¢ =t'q,

Max(t)={ae 4|3t € M(4, O) such that t=1r'a}.
The following proposition gives a list of basic properties of Max(z).

PROPOSITION 2.8. Let t be a trace and o a nonempty set of letters; then
(1) 0,(t)=t<Max(t)=a,
(2) if B=Max(t) then t=04(1),
(3) for every letter b there exists ae Max(t) such that 0,(t)=<X0,(t),
(4) tePr(4, ©)\{e} <« Card(Max(z))=1.

Proof. (1) ‘<’ suppose that t=0,(¢)w for some trace w##¢. Then

w=w'a for some letter a and thus ae Max(z). But analph{w)=(J, ie,
a¢a, and we get a contradiction.

‘=" If there exists a letter @ such that ae Max(¢) but a¢a then
t=t'aand 0,(1)=0,(t")t' <t

(2) This is an immediate consequence of (1).

(3) Let p=Max(s). Then by Corollary2.7 0,(t)=0,(04(¢))=
8,(0,(2)) for some aep. But 0,(0,(¢))<X0d,(¢), which accomplishes the
proof.

(4) Trivial. |

ExXaMPLE. Let A= {a, b, c}, @ ={(a, ¢), (¢, a)}, then Max([abcac]e) =
{a, ¢}, Max([acbc]o)={c}, Max([acab]e) = {b}, and the last two traces
are prime.

176 CORI, METIVIER, AND ZIELONKA

Note that al the definitions given here admit simple intuitive inter-
pretations in terms of dependency graphs introduced in Section 1. Let ¢
be a trace and D(:)=(V, E,A). Then for a subset & of 4 we set
V,={veV|I' eV, Av')ea and (v,v')e E*}, where E* is the transitive
and reflexive closure of E. Then D(0,(1))=(V, (V. xV,)NE, A|,).
Similarly, Max(z) corresponds to the set of labels of maximal elements of
D(t), Max(t)= {A(v)|ve V and (' eV, (v,v')€ E)}.

3. COMPUTING WITH 0,

In this section we continue to examine properties of the operator ¢,. In
particular, we investigate closely how the prefix @, ;4(¢) of ¢ is constructed
from 0,(¢) and 0,(r). We begin with an auxiliary lemma.

LEMMA 3.1. Let t be a trace, tyt, and tyt, be prefixes of t such that
Ju< A, 0,(t)=tyt, and t,01,.
Then Max(t,) n alph(t,) = &.

Proof. Assume that a is an element of alph(¢,) and of Max(t,). Then we
get

ltol . <ltolala < |# 4 (1)

Since t,0t, and aealph(s,), we have at,=t;a. On the other hand,
a e Max(t,) implies that ¢, = tya for some trace t,. Thus

0,(t)=tyt, =toat, =tyt;a.

The last equality implies a € «. Hence
lt|a=Iaa(t)|a=|’0tlla=“0|a' (2)

But (1) and (2) are in contradiction, proving the lemma. |

DreriniTION. For any two traces u and v, we define the following sets:
E(u,v)={aeA|0,(u)=0,(v)},
NE(u,v)={acA|d,(u)#0,(v)},

G(u,v)={aeA4|9,(u)<0,(v)}.

Note that NE(u, v) = A\E(u, v), and if u and v are prefixes of the same
trace then by Proposition 2.6 NE(u, v) = G(u, v) v G(v, u).

ASYNCHRONOUS CELLULAR AUTOMATA 177

PROPOSITION 3.2. Let t be a trace and u=0,(t), v=20g4(t), w=20,,4(1)
for some a, pS A. Then there exist traces tq, t,, t, such that

u=tyty, v=1lyl,, w=1tyt s, t,01,.
Furthermore, let ©=E(0,(1), 05(1)); then to=0,(u)=0.(v)=0,(w) and
alph(t,) "t =alph(ty) nt= .

Proof. Since 0,(t) and 04(¢) are prefixes of the same trace ¢, we get by
Proposition 2.1 and by Proposition 2.4 (3)

u=tyt;, v=1yt,, t, 01, O,op()=uvuv=tet =W,
for some traces tg, ¢, f;.
For any letter a, one of the following disjoint possibilities hoids:
(1) aealph(1,) > 8,(to) = 0,(v) < 8,(u) = ae G(v, u),
() aealph(t,) < 8,(to) = 0, (u) < 0,(v) < a€ G(u, v),
(3) a¢ (alph(t,) U alph(1;)) <= 0,(t) = 0, (u) = 0,(v) <> a € E(u, v).

If aeMax(t,) then by Lemma3.1 a¢alph(s)u alph(z,) implying
immediately a € E(u, v)=rt. Thus Max(t,) 7, which entails, by Proposi-
tion 2.8 (1) and by Proposition 2.5 (1), the thesis. |

In the rest of this section we investigate some properties of the sets
E(u, v) and G(u, v) when u=20,(t) and v=20g(t). Note that in this case,
since u and v are prefixes of the same trace 7, we have

NE(u, v) = G(u, v) U G(v, u).

First we give a technical lemma.

LEMMA 3.3. Let t be a trace of M(4, ©); let 0,(t)=uv and a € alph(v).
Then there exists a sequence of letters a,, @y, ..., @ of alph(v) such that:

a,=a, agex, Vi=1, ., k—1, (a;,a;,,)€0.

Proof. We proceed by induction on the length of v. If v =1 then v=aq,
thus we can take k=1 since aeco. Let v=v'av”. If a@v” then we get
d,(1)=uv'av” = av'v"a, hence a€a and we can take k=1.

Now suppose that there exists bealph(v”) such that (a, b)e @. Since
|v”| < |v|, we can apply the inductive hypothesis to v” and b to obtain a
sequence a;, d,, .., 4, € alph(v") such that:

a,=b, apea, Vi=1,.., k—1, (a;,a;,1)€0.

Now the sequence a, a,, d,, ..., 4, fulfils the required condition for v. ||

178 CORI, METIVIER, AND ZIELONKA

The next proposition states that if the sets «, f, and E(0,(t), 04(t)) are
given then we are also able to calculate the sets G(d,(r), d4(r)) and

G(04(1), 0,(2)).

PROPOSITION 3.4. Let t be a trace of M(A, ©). Let o, B be subsets of A,
and n = A\E(0,(t), 04(1)). Then c € G(0,(t), 04(t)) if and only if there exists
a sequence of letters c,, ¢,, ..., ¢, such that:

=6 cneﬂa vzalslsn—ls (C,-aci+1)€@m(’7><’7)~

Proof. From Proposition 3.2 we have 0,(t)=t,t,, 05(1) =tot,, 1,015,
n=alph(z,) U alph(t,), and G(2,(1), 0,4(1)) =alph(z,). Let c € G(d,(t), 04(2)).
From Lemma 3.3 it follows that there exists a sequence ¢, ..., ¢, of letters
in alph(z,) such that ¢, =¢, ¢,ef, and Vi, 1 <i<n—1, (¢;, ¢;, ;)€ 6O, and
we are done.

Conversely, assume that there exists a sequence cy,..,c, of letters
satisfying the required condition. Note that

0p(t)=04(05(2)) <X 0p(05(2) 1)) =0p(tot,t2) < 0y(2).

Thus f ~alph(z,) = & and, since ¢, € f, we get ¢, ¢ alph(¢,). As ¢, €7, this
implies that c,ealph(¢,). We prove the following assertion: for all i,
i=1,..,n, c;ealph(z,). Suppose that the assertion does not hold and that
i is the greatest index such that c;¢alph(s,). Note that i<n since
c,ealph(t;). Thus c;ealph(r;)=n\alph(z,) and c¢,,,ealph(s,). But
(¢;» ¢;,1)€ @ is in contradiction with the fact that ¢,0¢, and the proof
of the assertion is accomplished. Hence we get c¢=c,e€alph(s,)=

G(au(t)’ aﬁ(t)) l

PROPOSITION 3.5. Suppose that the sets E(0,(t), 0,(t)) are known for all
a,be A. Then we can determine for all subsets o, B of A the set

G(aa(t)’ aﬁ(t))

Proof. Let ce A. First note that for all aea, 9,(1)<X0d,(¢), which
implies 6.(0,(t))<X0.(0,(¢)). Similarly, for all bef, 0.(3,(1))=<3.(04(2)).
On the other hand, by Corollary 2.7,

0.(0,()) =Max{0.(04(1))|dea}
and

0.(05(1)) =Max{0.(0.(1))|e€ B}.
Therefore 0.(9,(t))<0.(d;(t)) if and only if

Jdeep, Vaea, 0.(0,(2))<0.(0.(1)).

ASYNCHRONOUS CELLULAR AUTOMATA 179

Thus
G(0,(1), 05(1))={ce A|3eep, Yaca, ce G(0,(1), 0.(1))}.

But by Proposition 3.4, for all a,ec 4, the set G(3,(t), 0.(1)) can be
determined if we know the set E(0,(¢), 2,(¢)). 1

4. ASYNCHRONOUS MAPPINGS

In this section we introduce the notion of asynchronous mappings from
M(A, @) into an arbitrary set X. We show that an asynchronous mapping
@ into a finite set X makes it possible to construct easily, for any subset ¥
of X, a cellular asynchronous automaton recognizing the inverse image
@ ~}(Y) of Y. Thus the problem of constructing an asynchronous cellular
automaton is reduced to the problem of constructing an appropriate
asynchronous mapping ¢. The construction of ¢ represents the difficult
part of the paper and is fully achieved in the next section.

In the present section we build a special auxiliary asynchronous mapping
v which codes some structural properties of traces. For instance, knowing
the value v, of v for a trace ¢, we are able to verify for any a,be 4 if
0,(t)<0,(¢) holds when ¢ itself is not known. In other words we are able
to reconstruct the prefix order of the traces 0,(t), ae 4, by means of v,.
The mapping v will also be used in Section 6 as a bounded time-stamp
system of messages in a special distributed system.

DEFINITION. A mapping ¢ from M(A,) into an arbitrary set X is
uniform if for any two subsets o, f of 4 and for all traces # and v the
following condition holds:

Lo(0.(u))=¢(0,(v)) and @(3;(u)) = @(d4(v))]
= @050 5(u)) = (0,0 4(v)).

A mapping ¢ is locally right regular if for all traces u and v such that ua,
vae Pr(A, ©) the following implication holds:

o(u) = ¢(v)= ¢(ua) = ¢(va).

A mapping ¢ which is uniform and locally right regular is called an
asynchronous mapping,

DEerFINITION. We say that an asynchronous mapping ¢ from M(4,)
into an arbitrary set X recognizes a subset T of M(A, @) if T=¢ ~'(Y) for
some subset Y of X.

180 CORI, METIVIER, AND ZIELONKA

Note that the uniformity condition can be coded by means of a family
of tables {U, 4|«, f < 4}. The rows and the columns of every table U, , are
indexed by elements of the set X and if x,,x,eX are such that
©(0,(2))=x;, @(05(t))=x, for some trace ¢ then U, plxi,] =x3,
where x;=¢(0,4(¢)). Uniformity of ¢ ensures the consistency of this
coding.

Similarly, the local right regularity can be coded by means of a single
table R indexed by elements of X and 4. The table R is such that if
x;=¢(u) and r=uac Pr(A4,) for some letter a and traces u, r then
R[x,, a]l=x,, where x,=¢(r). Given ¢(¢), {U,4l0, f= A} and R it is
possible to compute by induction on the prefix order the value ¢(¢) for any
trace t. To see this, suppose that ¢+# ¢ and the value of ¢ is known for all
proper prefixes r of 1, r <. We consider two cases.

If 1€ Pr(A, ©) then t = ua for some trace u and a letter a. Using the table
R we get o(t)=R[¢(u), a].

Now suppose that ¢ is not prime. Then Card(Max(¢)) > 1 and there exist
nonempty disjoint sets « and f such that « U = Max(¢). Since « and f are
proper subsets of Max(¢) by Proposition 2.8 (1) d,(¢) and @4(¢) are proper
prefixes of t and t=0,_4(¢). By the inductive hypothesis x, = (3, (1))
and x,=(d4(t)) are given and, using the table U,p, we get o(t)=
Usplxis x,].

The crucial role of asynchronous mappings is shown by the following
theorem which states the principal result of this paper.

THEOREM 4.1. For any subset T of M(A, @) the following statements are
equivalent :

(1) T is recognizable,

(2) there exists an asynchronous mapping @ from M(A, @) into a
finite set X recognizing T,

(3) there exists a deterministic asynchronous cellular automaton
recognizing T.

Proof. An asynchronous cellular automaton is also an M(4, O)-
automaton; thus the implication (3) =1 holds.

The implication (1) = (2) needs further developments and is delayed for
Section 5.

To prove (2)=(3) we construct an asynchronous cellular automaton
from the asynchronous mapping ¢. We choose X as the set of basic states.
For every trace u we define a global state s“ € S = F(4; X) in the following
way:

Vae A, s“(a) = p(0,(u)).

ASYNCHRONOUS CELLULAR AUTOMATA 181

We construct the automaton 4 in such a way that s* will be the global
state reached in A after the execution of the trace wu.
First note that if u is a trace and a a letter then

Vbe A\{a}, s“(b)=s"(b). (1)

Indeed, s*/(b)=@(0,(ua))=@(0,(u))=s“(b). Let us recall that s*|,
denotes the restriction of the mapping s to the set « = 4. We prove that

Vae A, Vu,ve M(A, O), 5| 62y = 5° | 6(ay = 5“(a) = 5"%(a). (2)
The equality
5l o) =5"|6a)
implies that
Vbe B(a), s*(b) = ¢(0, (u)) = ¢(9, (v)) = s*(b).
By uniformity of ¢ we get

(P(a@(a) (u))= (P(a@(a) (v)).

Now note that 0,(ua) = g, (u) a and similarly d,(va) = 95, (v) a, thus by
the previous equality and the local right regularity of ¢ we obtain:

9(0,(ua)) = ¢(0,4(va)),
ie.,
s*(a)=1s"a).

Now we are able to define the transition mappings of A.
Ifac A, a=0(a), s, F(a; X), 5,€ X then s,=d,(s,) if and only if there
exists a trace ue M(A, @) such that
s“a)=s, and | =S,
Note that (1) and (2) ensure the correctness of this definition. Moreover
if 4 is the global transition mapping induced by the local transition
mappings defined above then we have for every trace u

8= A(s° u). (3)

Finally we choose s° as the initial state and F= {s*| ue T} as the set of final
states. From (3) it is clear that 7<= T(A). To prove that A recognizes T, i.e.,

182 CORI, METIVIER, AND ZIELONKA

T=T(A), suppose that s*=s". Thus Vae 4, ¢(d,(u))=¢(d,(v)) and by
uniformity of ¢, @(u)= @(3,(u))=@(0,4(v))= @(v). This proves that

ueT=9 YY)e=veT=0"'(Y). 1

Note that for any two asynchronous mappings ¢, and ¢, from M(A4, ©)
into X, and X, respectively the mapping ¢ = ¢, x ¢, from M(4, ©) into
X, x X, defined by ¢(t)= (¢, (t), »,(¢)) is again an asynchronous mapping.

Let us give here some examples of asynchronous mappings. Of course
any constant mapping and the identity mapping are asynchronous map-
pings. Note that the last one maps M(4, @) into itself, that is, into an
infinite set. By the result obtained in the preceding section the operator d,,,
for any a € 4, is uniform and as it is easy to observe it is also locally right
regular, thus giving a third example of such a mapping.

Another asynchronous mapping, called App,, is obtained by associating
with any trace ¢ the set {0,(tf)|ae A}. Similarly the mapping App,
associating with any trace ¢ the set {0,(0,(¢))|a, be A} is asynchronous.

For any mapping ¢ we are interested in the equivalence relation ~,
over M(A, ©) associated with ¢ and defined by

U~,v if o(u)=@(v).

Note that the identity mapping and the mappings App, and App, induce
the same equivalence relation which is equality in M(4,), having of
course an infinite number of equivalence classes. We wish to define here a
mapping carrying enough information on a trace ¢ and having a finite
image, thus inducing an equivalence of a finite index. Information which
seems structurally essential in any trace ¢ is the prefix order on the traces
d,(t) for ae A. This idea suggests to define for every trace ¢ the set

front, (1) = {(a, b)e A]0,(1)<0,(2)}.

The mapping front,, which is a natural candidate for “approximation” of
a trace, is not uniform, as the following example shows.

ExampLE. Let A={a,b,c} and O={(aqb) (b a)}, u=abcabca,
v =abcabcab. Then 0 ,(u)=0,(v)=abcabca, 0,(u) = abch, 0,(v) = abcabcb.
We get
front, (8,(u)) =front, (8,(v)), front, (d,(u)) =front, (d,(v))
but

frontl (5{(1’,,} (u)) ;éfrontl (a{a,b} (U)).

ASYNCHRONOUS CELLULAR AUTOMATA 183

It seems that the ambiguity that does not allow determination of
front, (3, 5(u)) from front,(d,(x)) and front,(04(u)) is caused by the
deficiency in the information coded (provided) by front, and thus we
repeat our attempt with a more precise mapping front,, given by the
following definition:

front, (1) = {((a, b), (¢, d))10,(3, (1)) <0.(24(1))}-

It is obvious that front, codes simply the prefix relation of elements of
App, () and it is a refinement of front,. But another example analogous to
the preceding shows that front, is not uniform. Of course, it is possible to
generalize these constructions by defining front, for any integer k but it
turns out that none of these mappings is uniform. Examining carefully the
example given above we observe that the difficulty is due to (the
impossibility of determining which letters match in front,(d,(«)) and
front,(dg(u)) if u is unknown. In other words we cannot verify if
0.(0,(u))=0.(94(u)) if we only know front,(0,(u)) and front, (05(u)).

The main idea making it possible to eliminate this weakness is labelling
the elements of Pr(A4, @) in such a way that for any trace ¢, any subsets a,
B of A, and any letter ¢ the equality 0.(0,(t))=0,(0,(¢)) holds if and only
if the labels of these two traces are equal. These labels will provide the
information needed for the reconstruction of front,(d, 4(u)) from
front, (9, («)) and front, (65(u)). We thus define a labelling A from Pr(4,)
into the set of positive integers, N, , and show that it has the desired
properties.

DErFINITION. The label mapping A from Pr(4, @) into the set of positive
integers is inductively defined by

Ae) =card(4)

for acA, te M(A4, ®) such that tae Pr(A, ©) A(ta)=Min{ieN, |Vbe
A\{a} i#0,(0,(1)))}.

From this mapping A we construct for every trace ¢ a mapping v, from
AxAinto N :

DrrINITION. For any trace ¢ in M(A, @) and any pair of letters a, b in
A we set

vi(a, b) = A(0,(0,(1)))-

Intuitively, for each trace ¢ of M(A4, @) the mapping v, gives the labels
of elements of App,(z). In the sequel we prove that for any prime trace
u of Pr(4,©®) we have 1< A(u)<card(4). This implies that for each ¢

184 CORI, METIVIER, AND ZIELONKA

of M(A,0) the mapping v, belongs in fact to the finite set
F(AxA; {1, .., card(4)}) of mappings. Moreover, it turns out that the
mapping v associating with a trace ¢ of M(A4, @) the element v, of
F(AxA4;{1,..card(4)}) is asynchronous. This is the first non-trivial
example of an asynchronous mapping with a finite codomain. Its impor-
tance is emphasized by the fact that all asynchronous mappings recognizing
a given set T of traces that are constructed in the next section will be
obtained by refinements of this basic mapping v. The following technical
lemma is crucial for establishing the basic properties of the mapping v,. It
states that if v<Xu and r is an element of App,(u) such that r=<{v then r
belongs to App,(v).

LEmMMA 4.2. Let u,ve M(A4, @) and a, be A be such that
0,(0,(u))<Sv=<xu.

Then there exists a letter ¢ of A such that 0,(0,(v))=0,(0,(u)).

Proof. Let us first prove the following assertion: for any trace ¢ and any
letter a there exists a letter b of Max(z) such that 8,(¢)=0,(0,(¢)).

If we let a=Max(s), then r=27,(t) and by Corollary2.7 9,(t)=
0,(0,(t))=20,(0,(2)) for some bea.

We now return to the lemma’s proof. Since d,(u) and v are prefixes of
u, there exist, by Proposition 2.1, traces f,, t,, t, such that 9,(u)=1tt,,
v=1tyt, and t,0t,. As 0,(0,(u))<Xv, we get a¢alph(¢,) and 0,(0,(u))=
0,(t,). By the assertion, there exists a letter ¢ of Max(t,) such that d,(z,) =
0,(0.(ty)). By Lemma 3.1 alph(z,) Max(t,)=¢J, which implies that
0.(to)=0.(tot2) =0.(v) and 0,(0,(u))=0,(t5)=0,(0.(to)) = 0,(0.(v)) as
required. |1

Note that in general the letters b and ¢ used in the statement of
Lemma 4.2 are different. Let us take for instance u=ach, v=a, @ = .
Then ¢,(0,(u))=a<Xv and 9,(0,(u))=0,(0,(v)); i.e., we can take c=aq,
while ¢ =03,(0,(v))<2,(d,(u)), and ¢=b does not fulfil the condition.

PrROPOSITION 4.3. The mapping v from M(A, @) into F(Ax A;N)
associating with every trace t the function v, satisfies the following
conditions: Ya, b, ce A, Vt,re M(A,),

(v1) 1<v,(a, b)<card(A4),

(v2) 0,(0,(1))=0,(0.(r))=v.(a, b)=v,(a,c),
(v3) 04(0,(1))=0,(0.(1))=v,(a,b)=v,(a, c),
(v4) (ta,raePr(A,0) and v,=v,)=>v,=V,,.

ASYNCHRONOUS CELLULAR AUTOMATA 185

Proof. (vl) We return to the definition of A and proceed by induction
on the length of te Pr(A, @) to prove that A(z) <card(4).

The set {4(8,(0,(¢)))|be A\{a}} contains at most card(4)— 1 distinct
integers, and by the inductive hypothesis they are all not greater than
card(4). Hence the minimal element of N, that does not belong to this set
is also not greater than card(A4).

(v2) is an immediate consequence of the definition of v.

(v3) Tt suffices to prove that v,(a, b)=v,(a, ¢) = 3,(0,(2)) =28,(0.(t))
as the converse is a restricted form of (v2).
Let a, b, ce A be such that

M04(05(2))) = A(0,(0.(2)))- (1)

Because of the symmetric role of b and ¢ and by Proposition 2.6 we may
assume without loss of generality that

0,(0,(1)) < 0,(0.(1)).
Setting r =0,(0,(t)) we have
0,(0,(1))<r<t.

The case r = ¢ being trivial, we assume that r # ¢. By Lemma 4.2 there exists
a letter d of A such that

0,05 (1)) = 0,(04(r)). (2)
Thus
A0,(0,(1))) = A04(04(r))),
and as a consequence of (1) we obtain
A(r) = 4(0,(04(r)))-

Since r=0,(0.(t)) and r # ¢, there exists a trace u such that r = ua. Suppose
that d# a, then 0,(r) =0 ,(ua)=0,(u), yielding A(r)= A(3,(0,(«))), which
is in contradiction with the definition of A. Thus we see that d=ga which
implies by (2)

0a(05(1)) = 0,(04(r)) = 0,(0,(0,(9.(1)))) = 0,(0.(1)).

(v4) Let tae Pr(A4, ®). We shall show that v, is determined by v,
which obviously implies (v4). Let ce 4, ¢ #a. Then 8,(ta) =0,(¢) and thus
for all be 4 v, (b, ¢)=v,(b, ¢). Similarly, since 9,(za)= ta, we get

Via (6, @) = M0:(9,4(1a))) = M0, (1a)) = A(0. (1)) = A(6.(0.(1))) =v.(c, c).

186 CORI, METIVIER, AND ZIELONKA

Finally the last case to examine is
Viala, a)=A(0,(0,(ta))) = Ata)=Min{ie N, |Vbe A\{a} i#v,(a, b)}. 1

Let us recall that E(u, v)= {c€ 4|0 .(u)=0.(v)}. The following proposi-
tion shows how to compute the set E(d,(t), 05(t)) if the mappings v,
and v, are given.

PROPOSITION 4.4. Let t be a trace, and u=20,(t), v=04(t). Moreover,
let v be a mapping verifying conditions (v2), (v3), (v4) of Proposition 4.3.
Then

E(u,v)={aeAd|v,(a,a)=v(a, a)}.

Proof. Let aeAd. If aeE(u,v) then 0,(0,(t))=0,(05(t)). Hence
04(04(0,(1))) = 0,(0,(04(1))) and by (v2) v,(a, a)=v,(a, a).

Conversely, let v, (a,a)=v,(a, a). This implies that A(¢,(0,(t)))=
AM(0,(04(1))). Now note that by Corollary 2.7 there exist letters cea and
de f such that

04(0,(1))=0,(0.(1)) and 0,(3,(2))=0,(04(1)),
and by the previous equality
vi(a, ¢)=40,(0.(1)) = A(0,(04(2))) = v,(a, d).
Applying (v3) to this formula we get
04(0.(1)) = 0,(04(1)),
ie.,

0a(0,(2))=0,(04(2)),
which means that ae E(u, v). |

Now we are able to prove that the mapping v is asynchronous.

THEOREM 4.5. Any mapping v from M(A4,0) into F(AxA;
{1, .., card(4)}) associating with every trace t a function v, satisfying
conditions (v1), (v2), (v3), (v4) is asynchronous.

Proof. Since (v4) states local right regularity of v, we only have to
prove uniformity. Let u=0,(t), v=_704(t), and w= 0, 4(t) for some subsets
o, B of A and a trace r. By Proposition 3.2 we have u=1,1,, v=1t,t,,
w=tyt,t,, t;@t, and setting 1= E(u, v), alph(z;)nt=alph(s,)nt=¢.

ASYNCHRONOUS CELLULAR AUTOMATA 187

We should prove that v, is entirely determined by v, and v,. Observe now
that for any be A we have

5wy [0 I beTuGLw),
b W)_{ab(v) if betu Gy,).

Hence for all a, be A,

v,(a, b) if betuG(v,u),

@ b)= {vv(a, b) i beru Gl)

Now note that by Proposition 4.4 the set = E(u, v) can be calculated by
means of v, and v, and, in turn, by Proposition 3.4 the sets G(u, v) and
G(v, u) can be calculated from 7, « and 8. |

We end this section with some remarks concerning the mapping v. First
of all, note that v, makes it possible to reconstruct the prefix order of
the elements of App,(?)={0,(t)|laeA}. To see this we present the
equivalences

0a(1)R05(1) <= 0,(1) = 0,(0,(1)) = v,(a, a)=v,(a, b),

for any a, be A, te M(A, ©). Thus v, is a refinement of the mapping front,
considered previously, but in contrast to front; the mapping v is
asynchronous.

The asynchronous cellular automaton A obtained from v by the canoni-
cal construction given in the proof of Theorem 4.1 also exhibits some
remarkable features.

Let s* be the global state reached after the execution of a trace u. By the
construction,

Yace A, s*(a) =V,
Now observe that the following equivalences hold for all q, be A4:
0, () < 0y (u) <= 0, (u) = 0,(05 () = 0,(0,(0,(1))) = 0,(04(3,(u)))
< Vo, @) =vy,u,(a, a).

The last equality can obviously be tested if the local states of the agents a
and b, s*(a) and s*(b), are given. By a symmetric condition we can check
if 0,(u) < 0,(u) and if neither of these two conditions holds then 8, (u) and
0,{(u) are incomparable.

Recapitulating, we have obtained an asynchronous cellular automaton
such that for any trace u, for any agents a, & we can check which holds of
the three conditions:

188 CORI, METIVIER, AND ZIELONKA

(1) 0., (u)=<<x3p(u),
(2) Cp(u)<7,(u),

(3) 0,(u) and 0,{(u) are incomparabile,

by means of the local states s*(a) and s*(b) of these agents. It is not an easy
task to construct an asynchronous cellular automaton with the property
described above even for very simple dependency graphs. To appreciate the
problem the reader may try to do it in the case 4= {a, b, c,d}, and
6= {(a, c), (¢, a), (b, d), (d, b)}.

5. ASYNCHRONOUS MAPPINGS FOR RECOGNIZABLE SETS OF TRACES

In this section we accomplish the proof of the main theorem. For a given
recognizable trace language T we construct asynchronous mapping with a
finite codomain recognizing 7. In fact we present two different construc-
tions of asynchronous mappings. Both of them are obtained by augmenting
the basic asynchronous mapping v constructed in the previous section. We
begin with a small technical subsection, where some class of suffixes of
traces is examined.

A. o-Suffixes of Traces

Up to now, we were interested only in prefixes of traces. In this subsec-
tion we investigate suffixes of a special form. First a notational remark. For
any subset a of 4, by & we denote the complement of a, &= A4\x.

DEFINITION. Let 7 be a trace, and a = 4. By V,(¢) we denote the suffix
of ¢ corresponding to the prefix ¢;(z), i.e., the suffix such that

t=0;(t)V (1).

Note that alph(V, (7)) =« and it is the longest suffix with this property.
Therefore any suffix u of 7 such that alph(u) =« is also a suffix of V (7).
This fact will be used in the proof of the following proposition which gives
a simple formula for V,(V,(1)).

PROPOSITION 5.1. For any trace t and any subsets o, f of A,
V&(Vﬂ(t)) =Vou'\,6’(z)'

Proof. The trace V, 4(¢) is a suffix of V,(7) and alph(V, . 4(1)) =
anpfsa Since V,(Vg(t)) is the longest suffix of V,(¢) containing only
letters from «, this implies that V, ;(¢) is a suffix of V_(V,(1)).

ASYNCHRONOUS CELLULAR AUTOMATA 189

Conversely, V_ (V4(r)) is a suffix of ¢ and it contains only letters from
an f. But V, 4(7) is the longest suffix of + with this property. Therefore
V., (V;(1)) is a suffix of V,_4(r). 1

PROPOSITION 5.2. For any traces u and v and any subset o of A,
V. (u0) =V, ;) V, (),
where B is given by B = O(alph(d,(v))).
Proof. By Proposition 2.5 we obtain
0y (uv) =05, 4(u) 04(v), (1)
where = @(alph(é,(v))). Since
u=0;,5W) Vg, (),
v=0;(v) V,(v),
uv =05 (uv) V., (uv),
we get
w0 =05 () Vg, (1) 05(0) V.. (0) = 0,(u0) V., ().
This fact and (1) imply by the cancellative property of M(A,) that
Viaa(u) 0,(0) V,(0)=0,(v) V, (w). (2)

As alph(V,,rm(t))Q[?, for any trace ¢, by the definition of 8 the two traces
Vg~.(u) and 9;(v) are independent and commute, and applying the
cancellative property to (2) we get the result. J

COROLLARY 5.3. For any trace u and any subset o of A and a letter ae A
aca=V (ua)=V,(u)a,
a ¢ a sz(ua) = Vx\@(a)(u)'

Proof. Choose v=a in Proposition 5.2 and observe that 0,(a)=a if
ad¢aand dz(a)=cifaea |

Now we prove a useful property linking the mappings V and v:
Lemma 5.4. For any trace t of M(A, ©) and any subsets o and B of A,

a mapping v, verifying conditions (v1), (v2), (v3), (v4) of Proposition 4.3
determines uniquely the set alph(d,(V ,(1))).

190 CORI, METIVIER, AND ZIELONKA

Proof. Observe that by (v3), for all a, be A4,
E(0,(1), ¢y(1))={ceAlv,(c,a)=v(c, b)}.

Hence by Proposition 3.5, if v, is given we can find the set G(¢5(¢), ¢,(¢)).
Now we show that alph(é,(V,(¢))) = G(é5(1), 0,(t)), which accom-
plishes the proof. Using the definition of V and Proposition 2.5 we get

0, (1)=0,(05(1) V(1)) =2C,_,(05(1)) 0, (V(2)), (1)

where y = @(alph(2,(V4(1)))).
If cealph(d,(Vg(r))) then from the formula above we get

{
8ul@y0, (25(1)) < 2.(2,(1)).
But since cealph(d,(V4(r)))sy, by Proposition24 (2) we obtain
C.(Cyu;(05(1)) = .(C5(1)), and finally 0.(Cz(2)) < 0.(3,(2)); e,
ce G(dg(1), 0,(1)).

Now let us consider the case c¢¢alph(¢,(Vj(1))). Applying ¢, to the
formula (1) we get

0.(0,(1))=2.(0,,(Cp(1))).
But ¢, .(05(1))=<X0p(t) and thus we have

0:(0,(1))<0.(0p(1)), e, cgG(i5(1),0,(1)) 1

B. Asynchronous Mapping—First Construction

In the theorem below we present a construction of an asynchronous
mapping recognizing a given recognizable trace language 7. This
construction is obtained by adding to the basic asynchronous mapping v,
information about suffixes of the traces of T.

THEOREM 5.5. Let T be a recognizable subset of M(A, ©) and let f be a
homomorphism from M(A, ©) into a finite monoid H such that T= f~Y(G)
Jor some subset G of H. For any trace t, by f*, we denote the function from
P(A) into H that maps any subset o of A to f(V,(1)).

Then the mapping @ that maps any trace t of M(A4, @) to ¢(t)= (v,, f*,)
is an asynchronous mapping recognizing T.

Proof. First note that if we know the value ¢(t) it is possible to verify
if ¢ belongs to T or not; namely, the following equivalences hold:

teT<f(t)eG<= f(V, (1) eG<=f*,(4)eG.

Thus ¢ recognizes T.

ASYNCHRONOUS CELLULAR AUTOMATA 191

It remains to prove that ¢ is locally right regular and uniform. At the
beginning we show that f* is locally right regular. Note that, since v is
locally right regular, this fact will prove that ¢ is locally right regular also.
Let ue M(A, ©) and ac A be such that uae Pr(4,). Let < A. Then

{Va(u) a if aea,

VAl =g) i ags

thus

* _f*u(@) f(a) if aeaq,
/ M(a)_{f*u(@\@-(a)) if a¢a,

and we see that f*,, is entirely determined by f*, and a; ie., f* is locally
right regular.

We proceed to the proof of uniformity of ¢. Let u=20,(t), v=204(1),
w=20,_,(t). We show how to compute ¢(w) by means of ¢(u) and ¢(v).
First of all, since v is uniform, we can find v,, using v, and v,. Now to
compute f*, we need not only f*, and f*, but also v, and v,.

By Proposition 3.2,

U=tyt;, V=_=1yt,, t,0t,, to=0,(v), where 1= E(u, v).

Thus 0.(v)V.(v)=v=1t,1,=0,(v)t, and by cancellative property
t,=V_.(v). Hence we obtain

W=t0t1t2=ut2=qu(v). (1)

Let y= 4. We compute f*, (y)=f(V,(w)). Using Proposition 5.2 and
Proposition 5.1 we get from (1)

V, W)=V, (uV:(0))=V,,) V,(V.(0)) =V,)V, .:(v),

where p = @(alph(d,(V;(v)))).
Now applying the homomorphism f to this equality we obtain

SE@)=*.(\p) f*,(y 0 1)

In this way, we have a formula that describes f* , in terms of f*, and f*,.
Now we have to determine the unknown sets p and 7 that appear in the
formula; this will be done using properties of v.

First, Proposition 44 makes it possible to determine 7= E(u, v) by
means of v, and v,. And finally, by Lemma 5.4, the set alph(d;(V.(v))), and
consequently the set p, are determined by v,. ||

Theorem 5.5 proves the implication (1)=>(2) of Theorem 4.1, giving
explicitly the construction of an asynchronous mapping ¢. At the end we

192 CORI, METIVIER, AND ZIELONKA

would like to point out that since v,e F(4 x 4; {1, .., card(4)}) and f*, e
F(#(A); H), the codomain of ¢ is equal to F(Ax4; {1, .., card(4)} x
F(2(A); H) and thus it is finite.

C. Asynchronous Mapping—Second Construction

Let T be a recognizable subset of M (A, ©). In this subsection we present
another construction of asynchronous mapping recognizing T, given in
Theorem 5.8.

Similarly to the previous one, this new asynchronous mapping recog-
nizing T arises by augmenting the basic mapping v by information
concerning prefixes of traces of T. For this reason the new construction
seems to be more natural. Nevertheless the proof is more technical than the
preceding one.

We begin with a lemma revealing a property of M(4, ©)-automata.

LEMMA 5.6. Assume T is a recognizable trace language and
(M(A4, 0), 0,96, qq, F) is an automaton recognizing T. Let qe Q be a state,
and uy, .., u,, Uy, .., v, be traces such that

(1) Vi(l<i<n) (g, u;)=0(q,v,),

(2) Vij(1<i,j<n)j<i=v,0u,

(3) Vi,j(1<i,j<n)i#j=0v,0v,
Then 6(q, uy---u,)=08(q, v, -v,).

Proof. We use induction on n. If n equals one, the result is obvious.
Suppose n> 1. We compute

0(g, uy -1,) =06(0(g, uy), uy -+ u,)
=0(d(¢q,vy), uy---u,) (by (1))
=0(q, v Uy U,)
=0(q, uy -+ u,v,) (by (2))
=0(0(g, uy - -u,), vy)

=0(d(q, vy---0,), Uy) (induction hypothesis)
:5(q> Up ot 0,01)
26(Qavl'uvzz) (by (3)) I

LEMMA 5.7. Let t be a trace, %, B, 7 be subsets of A, 1= E(C,(1), d4(1))
and let

ASYNCHRONOUS CELLULAR AUTOMATA 193
(1) &=0(alph(2,(V (95(1))))), (2) ug=0:(0,(1)),
(3) u=V:(0,,:(0,(2))), (4) uy=0,(V(d4(1))).
Then:

(l) ay(aau[f(t))zuOLlluZa (11) 67u§({31(1))=u0u17

(iil) 0, :(04(1) =ugu,, (iv) u,0Ou,.

Proof. Let ¢y, t;, t, be such that o, (

t)=1toty, Op(t)=tyt,, and ¢, 01,.
From Proposition 3.2 we get 1,=20,(0,(1)) =0

r’(04(1)), and hence
t, =V (85(1)). (5)

Note that by (1) and (4) & = &(alph(u,)). On the other hand

alph(u,) =alph(V(0, .. (0,(1)))) = &
thus

alph(u,) x alph(u,) € @, ie., (iv) holds.
Since by Proposition 2.4 (2) 8.(9, (1)) =8.(2.,(6,(t))), we obtain

gty = 0:(0,(1)) V(0,,6(0,(1)))
=0:(0:,,(0,(1))) Ve(@,,£(0,(1))=0:,(0.(2));

ie., (ii) holds.
Using (ii), (5), and (1) we get

Ul Uy =0, ¢(0,(1)) 0,(22) = 0,(0,(1) ;) =0,(0,. 5(1));
ie., (i) holds.

By (5) and (1) we have ¢=6(alph(d,(s,))) < O(alph(z,)), and since
t,0t,, this implies ¢ N alph(z,)= . Therefore

Ug=0:(0,(1)) =0:(1o1)) =0 (to)- (6)
We have alph(u,) < £, which implies Max(u,) < £ On the other hand, since

u;=0,(t,) we have Max(u,)<y. Thus Max(u,)S¢ny and Proposi-
tions 2.8 and 2.4 (2) yield

Uy =0y e () =0, £(0,(1,)) =0, £ (15). (7)

194 CORI, METIVIER, AND ZIELONKA
Taking (6) and (7) into account, we have

6’\:(6[?(I)) = a;‘r\f(lotl) = 81;‘0 ;f)ut’(tO) 5;’m:(12)
=0:(ty) O, o (1) = Ugtiy;
i.e., we obtain (iii). |
THEOREM 5.8. Let T be a recognizable subset of M(A, ®) and let
(M(A4, ©), Q, 6, q,, F) be a finite automaton recognizing T. For any trace t

of M(A4, ©), by 0*, we denote the function from P(A) into Q that maps
every subset y of A to 5(qq, 0.(1)).

Then the mapping that m/aps any trace t of M(A, ©) to y(t)=(v,, 6%,
is an asynchronous mapping recognizing T.

Proof. First, we prove that the mapping y is uniform. Let » and f§ be
subsets of 4. Let 7 and r be traces such that

(vr‘,,(rj,6*5,(1)):("61“), 5*5,0))’ (1)
(vélg(l)i 5*55(1)) = (va/j(r)5 5*Pg(r))' (2)
Since v is uniform, to accomplish the proof it suffices to show that

o* o* (3)

Srop(t) = Cxup(r)”
From (1) and (2) we deduce by Proposition 4.4:

Let y be a subset of 4. Now v, ,,=v;,(,, implies by Lemma 5.4 that

plr) ép
alph(2, (V= (05(1)))) = alph(c,(V:(05(r)))),

which yields in turn

&=0(alph(8,(V.(24(1))))) = O(alph(8,(V-(84(r))))). (5)
Let
Uy =0:(0,(1)), Vg =0:(0,(r)),
ulzvf_(ayué(ax([)))’ vlzvf(a"/ug'(ax(r)))9
uy=0,(V:(95(1))), v, =0,(V:(04(r))).

ASYNCHRONOUS CELLULAR AUTOMATA 195
By (1), (2), (5) and by Lemma 5.7 we get

0(qos uo) = (g0, 55(51(’))) = 5*5,(;)(5)

= 0%, (€)= 0(g0, 9:(0,(r))) = 3(qq, Vo), (6)

(qo, toty) =0(qo, 0,6 (0, (1)) = 0%, (y U €)
=0%5,n (1 &) =0(qo, vov,), (7)

0(qo, tot2) =8(qo, 0, (05(1))) = 6%, (y N &)
=0% o, (¥ N &) = 6(q0, Vo03), (8)
u,Ou,, v, 00,. ©)

Now note that since Vasty = Vay(r)» by Lemma 5.4 we get
alph(u,) = alph(d, (V:(9,(1)))) = alph(2, (V. (34(r)))) = alph(v,).
This fact and (9) imply directly that
u, Ov,, u,Ov,. (10)
Thus we get by Lemma 5.6 applied to g = 3(q,, to) = 8(qq, vo)

5*519-‘8(1)(‘})) = 5(‘]0’ ay(azxuﬂ(t))) = 5((107 u0u1u2)
=0(qo, Vo0, v,) = 5*aw,;(r)(“/);

ie., (3) holds.

Now, we prove that y is locally right regular. Since v is locally right
regular, it suffices to show that 6* is locally right regular either.

Let a be a letter. Let ¢ be a trace in Pr(4, @)\{e} such that
0,(t)=t=ra. We shall show that 6* and a determine 6*,. Let y be a
subset of 4. There are two cases to examine.

Case 1. a¢y. Then 0,(¢)=0,(ra)=20,(r), which implies directly that
0%, (y)=0%.().

Case 2. aey. Then 0,(t)=0,(ra)=0,,6.,(r)0,(a)=0,,5w(r)a
Thus
0% ()= 0(qo, 0,(1)) = 8(3(qo, 0, 6(a (1)), @) = 3(3* ,(y L B(a)), a). |

Thus we have another construction of an asynchronous mapping
recognizing a given recognizable trace languages T. This gives, of course,
another proof of the implication (1)=(2) of the main Theorem 4.1. Note

196 CORI, METIVIER, AND ZIELONKA

only that the codomain of the asynchronous mapping i constructed above
is equal to

F(Ax4; {1,.., card(4)}) x F(2(A), Q)

and is finite.

6. BOUNDED TIME-STAMPS IN A DISTRIBUTED SYSTEM

Suppose that in a distributed system some agents communicate by
means of messages. Usually, to execute the prescribed protocol correctly
the agents should have some knowledge about the relative order of
messages. To this end, they add to every message a tag, called a time-
stamp, enabling them to find out the necessary information about the
ordering of messages. The importance of an appropriate stamping
algorithm was for the first time emphasized by Lamport (1978), to which
we refer the reader for further discussion. In most cases, it is a relatively
easy task to construct an appropriate stamping system if no bounds on the
size of stamps are imposed. But if we allow only a finite set of time-stamps
then the construction of an appropriate stamping system becomes difficult
or sometimes even impossible; see, for example, Li and Vitanyi (1989) for
such a construction. In this section we show how to use the result of
Section 4 to construct a special finite time-stamp system.

The distributed system considered here consists of a finite set 4 of
agents and a finite set B of boxes. The agents communicate by messages
that they leave in some boxes. Every agent ae 4 has access only to
a subset Dom(a)= B of boxes. Conversely, for every box ieB,
A;={ae AlieDom(a)} is the set of agenst which have access to i. If
ie Dom(a) then we say that the box 7/ and the agent a are adjacent.

By B,, for ie B, we denote the contents of the box i, i.e., the set of
messages that i/ contains. We assume that at the beginning all boxes are
empty: for all ie B, B;= (.

Every message is a triple (m, a, d), where m is the contents of the
message taken from some set M of possible contents; ae€ 4 identifies the
sender of the message; and finally d is a time-stamp from some set Stamps
of time-stamps. Thus formally the cartesian product U= M x 4 x Stamps is
the set of all messages. In the following, by contents, sender and stamp
we denote the projection of U onto M, A4, and Stamps, respectively.
Furthermore, we assume that any box contains for any ae 4 at most one
message sent by a.

During their moves the agents not only send new messages but also will
retransmit messages sent by other agents. For this reason, besides messages

ASYNCHRONOUS CELLULAR AUTOMATA 197

left by agents adjacent to i, every box i€ B can contain messages sent by
other agents and retransmitted by agents from 4,.

A single move of each agent ae A consists of four phases. During the
first phase a reads the contents of all adjacent boxes, emptying them in this
way. Let R be the set of messages that were read in this phase.

In the second phase, for every be 4\ {a}, if R contains messages sent by
b then a selects the last of them; denote it by u,.

In the third phase, a chooses m e M that it wishes to send and computes
a time-stamp de Stamps. Let u, = (m, a, d).

Finally, in the last phase a transmits to all adjacent boxes all messages
from the set {u.|ced}.

This entire move (consisting of reading, selecting, constructing a new
message, and sending) is considered atomic. This implies that the access to
every box is sequential, and moreover, at a given moment, an agent a has
access either to all its adjacent boxes or to none of them. Note that
immediately after the move all boxes adjacent to a have the same contents:
for every agent be A4, they contain at most one message issued by b,
namely the last message sent by » and known to a. We assume that for
every message u € U the field contents(u) does not provide any information
concerning the relative order of messages. Thus during the second phase of
every move, agent g can use only the fields sender(u) and stamp(u) of ue R
to find out for every be 4\ {a} the last message in R sent by b.

To implement this system we should specify the set Stamps, the
algorithm selecting messages in the second phase of each move, and the
algorithm assigning a stamp to the new message created in the third phase.

A simple implementation exists if we allow the set Stamps to be infinite.
Let Stamps =N , , and assume that every agent is equipped with a counter
initially set to 0. Then during its move, agent « increases its counter by 1
and takes the obtained value as the time-stamp d for its new message in the
third phase, u, = (m, a, d). The selection procedure in the second phase of
the move is trivial in this implementation. For every be 4\ {a}, a takes all
messages in R with the sender field equal to » and selects among them the
one with the greatest stamp field.

The aim of this section is to present another implementation with a
bounded number of time-stamps. First we define some auxiliary notions.
By a serial event we mean any finite sequence of elements of the set M x A,
SE= (M x A)*. Any occurrence of (m,a)e M x A in a serial event xe SE
represents a move performed by the agent a such that m is the contents of
the new message sent by a during this move. Let us suppose that o is an
algorithm implementing the system. For every x € SE and i e Box by B*(x)
we denote the contents of the box i after the execution of the serial event
x in the implementation «; B%(x) can be defined in the following inductive
manner:

198 CORI, METIVIER, AND ZIELONKA

(i) for all ie Box, B*(¢)= (,
(i) if y=x(m, a)e SE then
(1) for all ie B\Dom(a), B}(y)= B¥(x),

(2) to obtain the new contents of all boxes adjacent to a apply the
algorithm o to B;= B¥(x) with ie Dom(a).

ExaMpLE. Let 4={a,b,c,d} and B={B,, B, B.,, B,,}, where B,
with x, y € 4. denotes a box adjacent to x and y.

Let §=(m,, aY(m,, b)(m,, a)(m,, c){(ms, d) be a serial event and let s;

denote the prefix of s of length i, i=0, ..., 5.
The contents of the boxes after the execution of S; in the counter
implementation that was considered previously:
After S;:

Bu=, Bye=0, Ba= D, Bay=J;
After S;:
B,={(m,a 1)}, B,.=O, B.y=, Baa={(m,,a,1)};
After S,:
B, ={(my,a, 1}, (my, b, 1)}, B,,={(my, a, 1), (m,, b, 1)}
B =@, By,={(my,a, 1)};
After S,:
By ={(ms,a,2),(my, b, 1)}, By.={(my, a, 1), (my, b, 1)},
B.y=&, By={(m3,a,2),(my, b,1)};
After S,:
By ={(my,a,2),(my, b, 1)}, B, ={(m,, a1),(my, b 1), (my,c 1)},
B.,={(my,a,1), (my, b, 1), (my, c, 1)}, By, ={(m3, a,2), (m,y, b,1)};
After Ss:

Bub= {(m39 a, 2)9 (m29 ba 1)}9 Bbc= {(mla a, 1)a (mZa by 1)5 (m4> c, 1)}:
BCd= {(m3’ a, 2)’ (m29 b’ 1)9 (m4’ C, 1)’ (mS’ d9 1)},
By, = {(mh a, 2), (my, b, 1), (my, c, 1), (ms, d, 1)}

ASYNCHRONOUS CELLULAR AUTOMATA 199

Let @ be the independency relation over A defined in the following way:
0= {(a,b)e A*| Dom(a) n Dom(b) = & }.
Fact 6.1. For every ae 4, @(a)=J A

ie Dom(a) “7i*

We have also a natural independency relation ¥ over M x A4:
Y= {((m,a),(m',b))e (M x A)*|adb}.

Let H=SE/~, be the partially commutative monoid obtained as the
quotient of SE by the relation ~, induced by Y. Elements of H are called
histories. In the following, we assume that sender also denotes the
projection from M x A4 into A. It can be extended to a homomorphism
from SE into A*. Note that since

Vx, ye SE, x ~, y=>sender(x) ~ 4 sender(y)

we can extend the mapping sender to a homomorphism from H onto
M(A, ©) by

Vx e SE, sender ([x],)= [sender(x)]e.

The following fact shows that two serial events equivalent under ~ , are
indistinguishable in the system; ie., independent agents can perform their
moves simultaneously.

Fact 6.2. Let x, ye SE be such that x ~, y. Then for every algorithm
o implementing the system and for each box ie B, B*(x)= B*(y).

Thus we can set B¥*(h) = B%(x) for xe SE and h=[x], e H.

Fact 6.3. Let he H, t=sender(h)e M(A, ©). Then for every algorithm
o implementing the system and for all be 4 and ie B:

(1) 9,(0,4(2))=¢ if and only if B*(h) does not contain messages sent
by b,

(2) if {0,(04(tD)lp=104(t)l,=k>0 and (m, b) is the kth message
of b in the history h then B%h) contains a message u such that
contents(#) =m and sender(u) = b.

Now we give an implementation y of our system using a finite set
Stamps.

We set Stamps = F(4; {1, ..,n}), where n=Card(4). Let tag be the
mapping from Pr(4, @) into Stamps defined in the following way,

Vie Pr(4, ©), Vae A tag(t)(a)=A0,(1)),

where A is the function defined in Section 4.

200 CORI, METIVIER, AND ZIELONKA
Now the idea of the implementation 7 is to assign to messages elements
of Stamps in such a way that the following condition is satisfied.
Condition I. Vhe H,VYbe 4, Vie B, Vte M(A, @), VkeN _, if
(1) t=sender(h)e M(A4, O©),
(2) 18424 (tD]y =10, (0)], =k >0,
(3) (m, b) is the k-th message of b in A,

then
(m, b, tag(@,(C 4,(1)))) € Bi(h).

If Condition I" holds, A€ H, and t=sender(h) then for each ie B the
time-stamps of messages in the box i determine the mapping Vai(n:

Fact 6.4. Suppose that an implementation y satisfies . Let he H,
t=sender(h)e M(A, ©). Then

n if B7(h) does not contain
Vo, mlc b)= messages sent by b,

fley if (m, b, f)e B} (h).
Proof. By Fact 6.3 if B?(h) does not contain messages sent by b then

35(04(1) =¢

and
Voun (€6 b) = A0.(0,(04,(1)))) = Ale) =n.
Otherwise
Vo (€ 0)=A0(0,(0,4,(1)))) = tag(¢, (0 4,(1)))(c) = f(c). 1

Now we can present the details of the algorithm y. Let ae 4 and let
he H be the history executed up to now. Let ¢ =sender(h)e M(A4, &). By
Fact 6.4, inspecting the contents of box i, @ can calculate Vo, for all
i€ Dom(a). Now by the uniformity of v and Fact 6.1, a obtains v,).
During the selection phase, a chooses for every be A\{a} from the reading
set R the message u, = (m, b, f) such that

Vee A Je)=vs5.,0(c D)

By local right regularity of v, a can now get v, ,,. Let g be the mapping
from A into {I, .., n} such that

Yee A, gle)=v, e, a).

ASYNCHRONOUS CELLULAR AUTOMATA 201

Then g is the time-stamp for the new message that a creates during the
third phase, u,=(m, a, g). To show the correctness of y it suffices to
obserbe that if Condition I” holds for a history /4 then it holds for the
history A(m, a) for every (m, a)e M x A.

RECEIVED May 25, 1990; FINAL MANUSCRIPT RECEIVED July 11, 1991

REFERENCES

AALBERSBERG, I. J., AND ROZENBERG, G. (1986), Theory of traces, Theoret. Comput. Sci. 60,
1-83.

BERTONI, A., MAURI, G., AND SaBADINI, N. (1989), Membership problems for regular and
context-free trace languages, Inform. and Comput. 82, 135-150.

Brookes, S. D., Hoarg, C. A. R., AND ROSCOE, A. W. (1984), A theory of communicating
sequential processes, J. Assoc. Comput. Mach. 31, 560-599.

BruscHi, D., PiGHIZZINI, G., AND SABADINI, N. (1988), On the existence of the minimum
asynchronous automaton and on decision problems for unambiguous trace languages,
Lecture Notes Comput. Sci. 294, 334-346.

CARTIER, P., AND FoaTA, D. (1969), “Problémes combinatoires de commutations et
réarrangements,” Lecture Notes in Mathematics, Vol. 85, Springer-Verlag, Berlin/
New York, 1969.

CHoFFRUT, C. (1986), “Free Partially Commutative Monoid,” LITP Report 20.

ConwAy, L., aND MEaAD, C. (1980), “Introduction to VLSI Systems,” Addison-Wesley,

Reading MA.

Cori, R., LATTEUX, M., Roos, Y., aAND SoPENA, E. (1988), 2-asynchronous automata,
Theoret. Comput. Sci. 60, 93-102.

Cori, R., AND METIVIER, Y. (1988), Approximation of a trace, asynchronous automata and
the ordering of events in a distributed system, Leciure Notes Comput. Sci. 317, 147-161.
Corl, R., AND PERRIN, D. (1985), Automates et commutations partielles, RAIRO Inform.

Theor. Appl. 19, 21-32.

DiekerT, V. (1990), “Combinatorics on Traces,” Lecture Notes in Computer Science,
Vol. 454, Springer-Verlag, Berlin/New York.

EILENBERG, S. (1974), “Automata, Languages and Machines,” Academic Press, New York.

FLE, M. P., AND RoucaIroL, G. (1985), Maximal serializability of iterated transactions,
Theoret. Comput. Sci. 46, 1-16.

GasTIN, P., AND Rozoy, B. (1991), “The Poset of Infinitary Traces,” LITP Report 91.07.

Karp, R. M., AND MILLER, R. E. (1969), Parallel program schemata, J. Comput. System Sci.
3, 147-195.

LamporT, L. (1978), Time, clocks, and the ordering of events in a distributed system, Comm.
ACM 21, 558-565.

Li, M., AND VITANYI, P. M. B. (1989), How to share concurrent asynchronous wait-free
variables, Lecture Notes Comput. Sci. 372, 488-505.

LoTHAIRE, M. (1983), “Combinatorics on Words,” Cambridge Univ. Press, London/
New York.

MazURKEWICZ, A. (1977), “Concurrent Program Schemes and Their Interpretations,”
DAIMI-Report, Aarhus University.

MAZURKIEWICZ, A. (1984), Traces, histories, graphs: Instances of a process monoid, Lecture
Notes Comput. Sci. 176, 115-133,

202 CORI, METIVIER, AND ZIELONKA

METIVIER, Y. (1986), On recognizable subsets of free partially commutative monoids, Lecture
Notes Comput. Sci. 226, 254-264.

METIVIER, Y. (1987), An algorithm for computing asynchronous automata in the case of
acyclic non-commutation graphs, Lecture Notes Comput. Sci. 267, 226-236.

MILNER, R. (1983), Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25, 267-310.

OcuMAKsKI, E. (1985), Regular behaviour of concurrent systems, EATCS Bull. 27, 56-67.

PERRIN, D. (1989), Partial commutations, Lecture Notes Comput. Sci. 372, 637-651.

REisiG, W. (1982), “Petri Nets. An Introduction,” Springer-Verlag, Berlin/New York.

SAKAROVITCH, J. (1987), On regular trace languages, Theorer. Comput. Sci. 52, 59-75.

THOMAS, W. (1990), On logical definability of trace languages, in “Proc., ASMICS workshop
Free partially commutative monoids™ (V. Diekert, Ed.), Report TUM-19002, Miinchen
University.

VIENNOT, X. G. (1987), Heaps of pieces. 1. Basic definitions and combinatorial lemmas,
Lecture Notes Math. 123, 321-350.

voN NEUMANN, J. (1966), “Theory of self-reproducing automata™ (A. Burks, Ed.), Univ. of
Illinois Press, Urbana, IL.

ZIELONKA, W. (1987), Notes on finite asynchronous automata, RAIRO Inform. Theor. Appl.
21, 99-135.

ZIELONKA, W. (1989), Safe executions of recognizable trace languages, Lecture Notes Compul.
Sci. 363, 278-289.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

