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Abstract

As was noted by Mazurkiewicz, traces constitute a convenient tool for describing
finite behaviour of concurrent systems. Extending in a natural way Mazurkiewicz’s
original definition, infinite traces have been recently introduced enabling to deal
with infinite behaviour of non-terminating concurrent systems. In this paper we
examine the basic families of recognizable sets and of rational sets of infinite traces.
The seminal Kleene characterization of recognizable subsets of the free monoid and
its subsequent extensions to infinite words due to Biichi and to finite traces due to
Ochmariiski are the cornerstones of the corresponding theories. The main result of
our paper is an extension of these characterizations to the domain of infinite traces.
Using recognizing and weakly recognizing morphisms, as well as a generalization
of the Schiitzenberger product of monoids, we prove various closure properties of
recognizable trace languages. Moreover, we establish normal form representations
for recognizable and rational sets of infinite traces.

Résumé

Mazurkiewicz a montré que le monoide des traces forme un modele tout a fait
adapté a la description des comportements des systemes concurrents. En étendant
de facon trés naturelle la définition originale de Mazurkiewicz, les traces infinies ont
été récemment introduites afin de modéliser les comportements infinis des systemes
concurrents qui ne s’arrétent pas. Ce papier est consacré a 1’étude des familles de
langages reconnaissables et de langages rationnels de traces infinies. Le théoreme de
Kleene, son extension aux mots infinis par Biichi et son extension aux traces finies
par Ochmaiiski sont des résultats fondamentaux de ces théories. Le résultat prin-
cipal de cet article étend ce théoréme aux langages de traces infinies. En utilisant
la notion de morphismes reconnaissants et faiblement reconnaissants ainsi qu’une
généralisation du produit de Schiitzenberger pour les monoides, on prouve des pro-
priétés de cloture de la famille des langages reconnaissables de traces infinies. De
plus, on établit des formes normales permettant de représenter les langages ra-
tionnels et reconnaissables de traces infinies.

!This research has been supported by the ESPRIT Basic Research Actions No. 3166 ASMICS and
No. 3148 DEMON.



1 Introduction

The characteristic property of asynchronous distributed systems is the absence of any
kind of centralized control mechanism. The actions executed by separate components are
causally independent and different external observers can witness different time ordering
of their execution in the same computation. Thus, when we specify or examine the
behaviour of a parallel system, the order in which independent actions are executed seems
irrelevant and even impossible to precise. For these reasons, Mazurkiewicz [28] proposed
to identify two sequential behaviours if they differ only in the order of independent actions.
In this way an equivalence relation over the set of sequences of actions is induced and
the term traces was coined by Mazurkiewicz to name its equivalence classes. For a fixed
independence relation, traces form a monoid known as free partially commutative monoid.
These monoids were first considered by combinatorists [6], but since traces describe in
a natural way the behaviour of concurrent asynchronous systems, they have also been
studied intensively in relation to concurrency theory in the last years, see for instance the
monograph [10] or surveys [1, 30, 36], where extensive bibliographies of the subject are
given.

The traces introduced originally by Mazurkiewicz are in fact what we call finite traces,
they represent only finite behaviours of concurrent systems. However, since many concur-
rent systems, as for example operating systems, are non-terminating by their very nature,
we are often much more interested in their infinite rather than finite behaviours. These
infinite behaviours can be described at some level of abstraction by infinite traces. The
theory of infinite traces was initiated only recently but it attracts growing attention and
is developing rapidly. Implicit definitions of infinite traces can be found in [16] in relation
with problems of infinite serializabilities and in [3] in relation with Petri Nets. Some
ideas concerning infinite dependence graphs are also presented in [30]. Nevertheless the
first explicit definitions of infinite traces were proposed independently by Gastin [18] and
Kwiatkowska [26]. Subsequently infinite traces were examined intensively — we could
note here papers related to topological properties [4, 19], to PoSet properties [23, 26], to
connections with event structures [23]. In order to obtain a uniformly continuous con-
catenation, Diekert proposed a nice generalization of infinite traces to “complex traces”
[11]. Note that the traces we deal with in this paper are called real traces in [11] and [12].

The simplest concurrent systems are composed of finite state processes and their behaviour
is represented by recognizable sets of traces which constitute therefore one of the basic
family of trace languages. While recognizable sets of finite traces are well examined
and several deep results characterizing this family are known, recognizable languages of
infinite traces remain largely unexplored and only some preliminary facts were established

[19, 20].

Our paper undertakes a more systematic study of recognizability of sets of infinite traces.
In Section 2 we introduce (finite and infinite) traces and their representation by means of
dependence graphs. We define also the concatenation of traces and the main operations on
trace languages. Section 3 opens with the definition of recognizability of trace languages.
One of the first results on infinite words establishes the closure of recognizable sets under



complement [5]. To demonstrate this fact Biichi proved a key result which, reformulated
in the abstract setting of recognizability by means of monoids, states that the notion of
recognizability and the notion of weak recognizability yield in fact the same family of lan-
guages of infinite words. The proof that weakly recognizable and recognizable morphisms
define the same family of languages of infinite words makes use of the Schutzenberger
product of monoids [35, 37, 38]. In Section 3 we generalize the Schiitzenberger product
and define a diamond product of monoids which is appropriately tailored to cope with
peculiarities of trace multiplication. Using this product we show that recognizable and
weakly recognizable sets coincide also for infinite traces. An important corollary, obtained
as a by-product of this result, states that for a set 7' of finite traces the recognizability
of T implies the recognizability of T“. This result is interesting by itself as numerous
sufficient conditions are known that ensure recognizability of 7™ for a recognizable trace
language T' [25, 31, 32, 34] and now they can be applied to ensure recognizability of
the infinite iteration 7% of T'. There are however other interesting consequences of this
fact. First, this result enables to set up a kind of normal form theorem for recognizable
languages of infinite traces (Theorem 3.22). The second consequence is presented in Sec-
tion 4. Although the family of recognizable trace languages forms a boolean algebra for
the operations of union, intersection and complementation and is closed under concatena-
tion, it is not closed, in general, neither under finite iteration nor under infinite iteration.
Thus Kleene’s and Biichi’s characterizations of recognizable sets of respectively finite and
infinite words that identify these sets with rational languages does not hold for traces.
However similar characterizations are of great interest since they allow to construct from
single actions all recognizable languages in a simple and systematic way by means of a
few basic operations. For finite traces a suitable characterization of recognizable sets
was given by Ochmanski [33]. He introduced a new operation on trace languages — c-
iteration — and defined the family of c-rational trace languages which are obtained as
rational languages with c-iteration replacing iteration. A result of Métivier [31], which
was also independently announced by Ochmariski [33] and by Clerbout and Latteux in
the more general framework of semi-commutations [7], states that recognizable finite trace
languages are closed under this new operation. As a consequence, the family of c-rational
trace languages is included in the family of recognizable trace languages. The major
breakthrough due to Ochmanski is his elegant proof of the inverse inclusion establishing
the equality of the two families. In Section 4 we show that this result extends to infinite
traces — the families of recognizable and c-rational sets of infinite traces are equal and
included in the family of rational sets. Section 4 terminates with a theorem presenting a
normal form characterization for rational languages of infinite traces.

A preliminary form of our paper appeared in [22], we should note however that the present
final version differs in fact considerably from [22] and contains some additional results.
Some initial results concerning in particular closure properties can also be found in [20],
they are included here for the sake of completeness and with sometimes more elegant
proofs. In our work we were constantly inspired by the remarkable treatise [37] of Perrin
and Pin on infinite words, which results in our attempts to present a uniform approach
to recognizability by means of monoid morphisms.



2 Traces — definitions and basic properties

We begin by fixing notations. For a finite alphabet A, A* and A“ will denote the sets of
finite and infinite words respectively. Then A* = A*UA® is the set of all finite and infinite
words. The empty word, as well as the unit element of any monoid, will be denoted by
1. The concatenation over A* is defined by

o zy ifze A”
Yoy € AT, ey = { J:y otherwise
where zy is the word obtained by appending y to z. Concatenation yields a monoid
structure over A*. The length of a word z is denoted by | z |, while if a € A then
| |, is the number of occurrences of the letter a in x. By alph(z) we shall denote
the set {a € A | |z |,> 0} of letters occurring in a word z, while alph,(z) is the set
{a € A||z|,= oo} of letters that occur infinitely often in x.

Let I € A x A be a symmetrical and irreflexive relation over a finite alphabet A. The
letters of A can be viewed as actions in a distributed system. Then (a,b) € I means
intuitively that the actions a,b are independent and can be executed in any order or
even in parallel. The relation [ is called independence relation while its complement
D = (A x A)\I is the corresponding dependence relation.

There are numerous different equivalent definitions of traces. Here we introduce them by
means of occurrence graphs [29]. This definition allows uniform approach to finite and
infinite traces. Moreover, occurrence graphs illustrate intuitive ideas lying behind the
notion of trace.

Let u € A*. Then

Ve ={(a,i) |a € Aand 0 < i <|ul,}
Intuitively, V,, is the set of action occurrences in u, (a,¢) being the (i + 1)st occurrence of
ain u.

Let I be an independence relation and let D be the corresponding dependence relation.
By I'p(u) we shall denote the oriented graph (V,, F,) with V,, as the set of vertices and
E, C V, xV, as the set of edges, where ((a,?),(b,7)) is in E, if (a,b) € D and the
occurrence (a,1) precedes the occurrence (b, j) in u, i.e., more formally, if there exists a

prefix v of u such that (a,¢) € V, while (b,5) ¢ V..

Now, we define an equivalence relation ~; over the set of words by setting
Yu,v € A®, u~jyv if I'p(u) =T'p(v)

The equivalence classes of ~; are called traces. By M>(A,I) we shall denote the
set of all traces, M*(A,I) = A*®/ ~j;. This set is partitioned on two sets: the set
M(A,I) = A*/ ~; of finite traces, which are equivalence classes of finite words, and the
set M“(A,I)= A%/ ~j of infinite traces, which are equivalence classes of infinite words.

Throughout the paper by ¢ : A — M>(A, I) we shall denote the canonical mapping
that maps each word z € A* to its equivalence class under ~;. The equivalence class
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Figure 1: A finite dependence graph

©(1) of the empty word 1 is called the empty trace; it will also be denoted by 1. Let
t € M*(A,I)be a trace and let x be any word such that ¢(z) =t¢. Then I'p(t) = I'p(x)
is the occurrence graph of ¢ and alph(t) = alph(z), alph,(t) = alph,(x) are respectively
the set of letters occurring in ¢ and the set of letters occurring infinitely often in 7.

The interest raised by traces results from their interpretation as a causal relation between
events . Let t € M>(A,I) and T'p(t) = (Vi, E;). Let Ef be the transitive closure of the
relation F;. Suppose that (a,1),(b,7) € V;. Then ((a,i),(b,j)) € F;" means that in ¢ the
(¢ 4+ 1)st occurrence of action a causally precedes the (j + 1)st occurrence of action b. If
neither ((a,1),(b,7)) € E; nor ((b,7),(a,2)) € E; then these two occurrences of a and b
are causally independent.

Example 2.1 Let a—b—c d—e be the graph of the dependence relation, i.e. A =
{a,b,¢,d,e} and D = {(a,a),(b,b),(c,¢),(d,d), (e, e),(a,b),(b,a),(bc), (c,b),(d e),(ed)}.
Let v = acdbaeacbd and t = ¢(u). Figure 1 represents the occurrence graph I'p(t) =
FD(‘M).

We see for instance that in I'p(¢) the first occurrence (a,0) of a precedes the second
occurrence (¢, 1) of ¢, while the second occurrence (a,1) of a is independent of (¢, 1).
Moreover, occurrences of a, b, ¢ are independent of occurrences of d, e.

Let us note that usually ~; is defined in a slightly different way for finite words [28]. In
that classical definition ~; is the reflexive and transitive closure of the relation ~ defined
below:

Ve,ye A*, x ~y if Ju,v € A*, J(a,b) € I, v = uabv and y = ubav

In other words,  ~; y if we can obtain z from y by a finite number of transpositions of
neighbouring independent letters. As it is well-known for finite words this definition of
~ is equivalent with the previous one [29]. Nevertheless, it turns out that this classical
definition cannot be extended directly to infinite words, for instance we have (ab)¥ ~;
(ba)* if (a,b) € I but it is impossible to obtain the word (ba)* from the word (ab)* by a
finite number of transpositions of letters. Note that ¢((ab)®) is the trace representing the
behaviour where both the action a and the action b are executed independently infinitely
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many times.

Remark 2.1 i) Let x1,22,y1,y2 € A® be such that vy ~j vy and y1 ~j ya. Then

T1Y1 ~1 T2Y2.

ii) Let xo,x1,22,..., Yo,Y1,Y2,... be two infinite sequences of words of A> such that
x; ~1y; for allv € IN. Then xori1x9... ~1 YoY1Y2 .. ..

This remark shows that ~; is a congruence over the set A* of words inducing the monoid
structure over M*°(A, ) with the multiplication given by

Va,y € A%, () - o(y) = ¢(ay) (1)

Moreover, the second part of the remark shows that ~; is a congruence for infinite con-
catenation over A*. Thus we could define the infinite multiplication of traces by setting
for any sequence xg, 1, Tq, ... of elements of A®

p(xo)p(xr)e(x2). .. = (roziza. . .) (2)

However, while the formulae (1) and (2) yield consistent and formally correct definitions
of finite and infinite multiplications of traces, they are not satistactory in general. In fact
(1) does not seem to be adequate if € A%, i.e. if we multiply on the left by an infinite
trace. To illustrate the problem let us consider the multiplication of independent traces.

Two traces t,r € M*>(A, I) are said to be independent, which is denoted by (¢,r) € I, if
alph(t) x alph(r) C 1.

Suppose that ¢,7 € M(A,I) and (¢t,r) € I. Then V; NV, = () and we have simply
Ip(tr) =Tp(rt) = (Vi UV,, E;UE,), where I'p(t) = (V;, E;) and I'p(r) = (V,, E,). This
fact reflects the intuitive idea that if ¢ and r are independent then executing ¢ and next

r amounts to executing ¢ and r in parallel. It is reasonable to require that the same
property holds for all traces of M (A, I).

For instance, let (a,b) € I. Then for all 0 < n,m < oo we have

p(a")p(b™) = @(a"b™) = p(b"a") = p(b")p(a")
and the occurrence graph of ¢(a™b™) is the union of the occurrence graphs of ¢(a”) and
©(b™). On the other hand, let us consider two traces t = ¢(a“) and r = @(b*). These two
traces are independent and the union I'p(¢)UI'p(r) = (V;UV,, E;UE,) of their occurrence
graphs is the occurrence graph of the trace p((ab)”). Thus for any “reasonable” definition
of trace multiplication we should have

p(a®) - o(07) = p((ab)”) # p(a®) = p(a*b”)

Since our interest in traces stems mainly from the interpretation of their occurrence graphs
as behaviours of concurrent systems, it is natural to expect that an adequate definition
of trace multiplication should be formulated in terms of occurrence graphs. Actually this



definition is a bit easier to formulate in terms of dependence graphs which are labelled
counterparts of occurrence graphs.

In the sequel we shall consider oriented graphs with vertices labelled by elements of the
alphabet A. Two such graphs (V;, E;, A;), 1 = 1,2, where A; : V; — A is the labelling
mapping, are isomorphic if there exists an isomorphism f of unlabeled graphs (V4, F1) and
(Va, Ey) preserving the labellings, i.e. such that Yo € Vi, Ai(v) = A2(f(v)). By labelled

graphs we shall mean the corresponding isomorphism classes.

If (V, E) is an unlabeled graph and A : V' — A a vertex labelling then the corresponding
labelled graph will be denoted by [V, F, A\]. Recall that E* stands for the transitive closure
of .

A labelled graph [V, E, )] is a dependence graph over (A, ) if the following conditions
hold:

(DO0) the underlying unlabeled graph (V, E) is oriented and acyclic,

(D1) the set V of vertices is countable,

(D2) Vo, B €V, (Ma),A(p)) €D <<= a=pFor (a,p) € For(f,a)€E,

(D3) Va eV, card{B €V | (B,a) € Et}) < .

The set of dependence graphs over (A, I') will be denoted by DG (A, I). There is a natural
bijection A between the sets M (A, I) and DG(A, I) that is defined in the following way.
Let t € M>(A,I),Tp(t) = (Vi, Et). By A : V; — A we shall denote the natural labelling
defined as A((a,7)) = a for (a,1) € Vi. Then we set

A(t) = [Vi, Ery M)

It is clear that A(t) verifies (D0)—(D3), i.e. the mapping A is well defined. Now we
show that A is injective. Let t1,t € M*(A,I). Suppose that I'p(t;) = (V;, E;) and
A; o V; — A are natural labellings of V;, 2 = 1,2. Moreover, let f be an isomorphism of
(Vi, E1, A1) and (Va, Eg, A2). Since f preserves labellings, f((a,t)) is equal (a, ) for some
J € IN. But both in I'p(#;) and I'p(¢2) the following condition holds:

((a,k),(a,l)) € E; iff k <1 (1=1,2)
Thus, since f is an isomorphism of unlabeled graphs I'p(#1) and I'p(t2), we should have
in fact f((a,7)) = (a,?), i.e. I'p(t1) = I'p(t2), which implies in turn that ¢; = ¢,.

It remains to prove that A is surjective. To this end we shall use the so-called Foata
normal form of traces [4, 6, 19]. Let [V, £, \] be a dependence graph. We shall define
inductively two sequences Vg, Vi, V3, ... and Uy, Uy, Uy, . .. of subsets of V:

o U=V, Vo={a€Us|~3B €Uy (B, a)c E}

i

o Uip1 = V\(Uizo Vi), Vis1 = {@ € Uip1 | =3B € Uiy, (B, ) € E}

It is easy to prove inductively the following two facts characterizing the sequence

Vo, Vi, Vo, .. .

for each a € V, if card({B € V | (B,@) € E*}) =n, then a € |V (3)

=0



and

if (a,3) € Eand a€eV;, f €V, theni <y (4)
The first of these facts shows that

v=Uv (5)

Moreover, if a, 3 € V; then (a,5) ¢ E, i.e. (AMa),A(B)) € I. Thus all elements of V;
have different labels and card(V;) < card(A). Let @ = xoxi22... be any word such that
each ; is a list of labels (without omissions and repetitions) of elements of V;. Directly
from (4) and (5) it follows that [V, E,\] and [V., Ez, A;], where I'p(z) = (V;, E;) and
Az Vi — A is the natural labelling, represent the same labelled graph. Hence A is
surjective and we have proved that M > (A, I) is in bijection with DG(A, I).

There exists a natural multiplication operation over the set DG(A, I') of dependence graphs
which reflects well the intuitive idea of the sequential composition of traces. This opera-
tion is defined in the following way. Multiplying two dependence graphs [V, Fo, Ag] and
Vi, Eq, ] we first take their disjoint union and next add edges joining vertices vy € V5 and
v1 € Vi whenever (Ag(vg), A1(v1)) € D. Formally, let [Vo, Fo, Aol, [V1, E1, M1] € DG(A, T),

where without loss of generality we can assume that V5 NV} = (). Then

[‘/OaEOa)‘O] ' [‘/17E17)‘1] = [V5E7)‘]a

where
Vo= WuWw,
E = EO U E1 U {(’Uo,’vl) | Vg € ‘/0, v € ‘/1 and ()\0(’00),)\1(’01)) € D},
)\ = )\0 U )\1

Unfortunately, in general the resulting labelled graph [V, £, )] is not necessarily a de-
pendence graph, whereas it always satisfies (D0)-(D2) it does not satisfy (D3) unless
{(a,b) € A% | card()\y'(a)) = w and A\T'(b) # 0} C I. Thus, although this operation
seems to be more natural than the one defined by formula (1), it has the drawback of
inducing the trace multiplication that is only partial:

for t,r € M>(A,I),

u if alph,(t) x alph(r) C I and u € M™(A, 1) is
t-r= such that A(t) - A(r) = A(u) (6)
undefined otherwise

In this paper this formula is used in the sequel as the definition of trace multiplication.
Now we shall give some elementary properties of this operation. First let us note that the
multiplication defined by (6) is associative:

Remark 2.2 Forallt,r,u € M>(A,I) we have t(ru) = (tr)u, where this equality means
that the left-hand side exists iff the right-hand side exists and then both sides are equal.

Previous remark concerning the closure of DG(A, I') under multiplication yields directly
the following fact:



Remark 2.3 Let tg, -, 1 be traces of M™(A, 1), then to-- -ty exists if for all 1,5 such
that 0 < i < j <k we have alph,(t;) x alph(t;) C I.

The multiplication defined by (6) does not satisfy the condition (1) in general, however
(1) remains valid if we multiply by a finite trace on the left:

Remark 2.4 For all x € A* and y € A™ the following equality holds in M*(A,1):
o(x) - y) = p(xy)

Proof: Let I'p(z) = (Vi, E2), I'p(y) = (V,, E,) and let A, : V, — A and ), : V, —
A be the natural labellings. Then it is easy to see that

A(ap(a:y)) = [Vm Em; )‘r] ' [Vyv Ey7 )‘y]

which yields the thesis. a

When dealing with infinite traces we need also the notion of infinite product of traces. As
in the case of the finite concatenation of traces, this operation can be expressed naturally in
terms of dependence graphs. Let to,t1, %2, ... be an infinite sequence of traces of M>(A,I)
and let A(t;) = [Vi, E;, Ai] for all ¢ € IN, where again without loss of generality we can
assume that all sets V; are pairwise disjoint. Now we set

[‘/Oonv)‘O] ’ [‘/17E17)‘1] ' [‘/27E27)‘2] = [VaEv)‘]
where
V = U?io ‘/iv
E=UZo B UUSo{ (0, 0") [ €V, v" € V), i <y (Ni(v'), A;(v") € D}
A= UZ M

As previously, the resulting labelled graph always satisfies (D0)-(D2), whereas it satisfies
(D3) if and only if for all 7,j such that 0 < ¢ < j we have alph,(t;) x alph(t;) C I.
This allows to define a partial infinite product of traces as follows. Let tq,t1,%5,... be a
sequence of elements of M (A, I), then

such that A(to) - A(t1) - A(t2) -+ = Au)

undefined otherwise

{ u if alph,(t;) x alph(t;) C I, for all ¢ < j and uw € M*>(A, ) is
totltg ce. =

Note that, in particular, if all traces t; are finite then their infinite product always exists.
In a similar way, although the formula (2) is not correct in general for the infinite product
of traces defined above, it remains valid as long as we multiply finite traces only:

Remark 2.5 Let xg, 21, 29,... be a sequence of finite words of A*. Then

p(zo)p(xr)p(x2). .. = (rozizs. . )



t I R R uo—->u’1—->u’2—->...

Ug—> u'i—-> u&—-) ..

Figure 2: t-r = upuquy. ..

One of the basic tools enabling elegant approach to finite and infinite trace concatenation
is the following factorization lemma. A special case of this lemma was previously given
independently by Cori, Perrin [9] and Mazurkiewicz [29].

Lemma 2.6 Let t,r € M>®(A,I). Let ug,uy,us,... be a (finite or infinite) sequence of
finite traces of M(A,I). Then

t-r = uguqlsy...
if and only if there exist traces uy, uy, uh, ... uy, uf,ul, ... such that

n"

i) for each v, u; = ul - u,

- ) TR
i) t = upuiuly ..., r=uguiul ...

ii) for allv,j, if i < j then (ul,u’) €1

i Yy

Proof: Let u = tr = ugujus... (cf. Figure 2).

Let A(u) = [V, E, A]. Since u = tr, the set V' can be partitioned on two subsets V;, and
V., VinV, = 0, such that A(t) = [V, Ei, A, A(r) = [V,, E., A], where Ey = EN(V, x V),
ET =FEN (‘/T X ‘/T), )\t = )\|Vt7 )\T = )‘|Vr and

E=E,UE, U{(a,8) €V xV, | (AMa),\(8)) € D}. (7)

Intuitively, V; corresponds to the set of actions of the prefix ¢ of u while V, is the set of
actions of the suffix r of u.

Similarly, since u = ugujus ..., V can be partitioned on a family of pairwise disjoint sets
Vi, U; Vi = V), such that A(u;) = [Vi, Ei, \i], where X\; = A|y,, E; = EN(V; x V;) and
B =B U{(a,8) € Vix V; |i < and (Aa),\(B)) € D}. 3)

Again, V; corresponds here to the set of actions of the factor u; of the trace u. Let

Vi = VinV, VI = ViV, Bl = (V/ x V/) N E, B! = (V' x V)N E. Let A, \! be

k3 T K3

restrictions of the mapping A on the sets V! V! respectively. It is clear that [V, E! \]

[ k3 T k3

and [V, B \!] satisfy the conditions (D0)-(D3), i.e. they are dependence graphs. Let

T K3

ul, ul be traces such that A(ul) = [V/, E, X] and A(u!) = [V, E, \!]. From (7) and (8)

1?7 2 1?7 1?7

it follows that

Ei=E/UE!'U{(a,B) € V] x V! | (\(a), \(8)) € D},

K3 k3
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which shows that
[V/7 m 2] [V” E! )‘”] = [‘/;'7Eia)‘i]7

[ 127"
i.e. ulu! = u; and (i) holds.

Similarly it is clear that

[‘/0,7 E(,Ja )‘6] ' [‘/1/7 EL )‘/1] ' [‘/2/7 Eéa )‘,2] = [‘/157 Eta )‘t]
and
[‘/0”7 E(/J/7 )‘g] ' [‘/1”7 Eilv )‘/1/] ' [‘/2//7 Eé’, )‘/2/] = [‘/7"7 Erv )‘T]v

which proves (ii).

Suppose that (iii) does not hold and for some ¢,7, ¢ < j, there exist a € alph(u!) and
b € alph(u}) such that (a,b) € D. Let a be any occurrence of a in [V", EI', \/], i.

a € V", Ma) = a. Similarly, let 3 be any occurrence of b in [V, B}, \l], i.e. 3 € V]’,
A(B) = b. From (8) it follows that (o, 3) € E. On the other hand, a € J; V" =V, and
B e U; V] =V, thus we get (a,8) € EN(V, x V). But by (7), EN(V, x Vi) =0, a
contradiction.

If the conditions (i),(ii),(iii) are satisfied then we can verify immediately that A(tr)
A(uguquz . . .).

S Ol

As in the case of words, the definition of trace multiplication extends directly to sets o
traces.

If Tl,TQ g MOO(A,]) then
T1 . T2 = {tltg | tl € T1 and tQ S TQ}

Similarly, if T C M*(A, I) then the finite iteration T* of 7" is defined as
=, where T° = {1} and T =TT,

while

is the infinite iteration of 7.

We would like to end this section with a remark concerning trace multiplication. The
reader may wonder if it is really “reasonable” to use a multiplication which is only partially
defined. In fact other multiplication operations were proposed previously [11, 19, 27].
Let us note that the multiplication defined by Kwiatkowska is totally defined but not
associative, on the other hand the multiplications defined by Diekert and Gastin are
associative and totally defined but, in general, only on sets that strictly contain the set
M>(A,I). However, there are three major cases where no controversy exists and where
all definitions give the same result:

M1 multiplication ty - t5, where t; € M(A,I) and t3 € M™(A, 1), i.e. the multiplication
by a finite trace on the left,
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M2 multiplication t; - ¢ of independent traces, (¢1,%;) € I.

M3 infinite multiplication totits ... of finite traces, Ve € IN, t; € M(A, ).

On the other hand, as we shall see in Section 3, to examine recognizable subsets of
M= (A, 1) it suffices in fact to consider these three cases. Therefore, as far as recogniz-
ability is concerned, all definitions mentioned above are “reasonable” and we have adopted
the simplest associative one.

3 Recognizable sets of traces

3.1 Definitions and basic properties

We begin this section with the definition of recognizable sets of traces.

Definition 3.1 A morphism n : M(A,I) — S into a finite monoid S recognizes a
subset T of M (A, I) if for each infinite sequence to,t1,1q,... of traces from M(A,T) the
following implication holds

totitz... € T = n"(n(to))n~ (n(t1))n " (n(t2))... € T

A subset T of M (A, 1) is recognizable if it is recognized by some morphism into a finite
monoid.

The definition of recognizable morphism given above is usually used to define recognizable
subsets of infinite words [37], therefore it is reasonable to apply it in order to define
recognizable subsets of the set M“(A, ) of infinite traces. It is less evident why we
can apply it as well for subsets of M(A,I) (or even generally to subsets of M (A, 1)),
especially in view of the fact that M(A, ) is a monoid and so the classical definition
of recognizability in monoids [15] readily applies and in fact is usually used in this case

[9, 10, 31].

Let us recall that according to the classical definition a subset 7" of M (A, I) is recognized
by a morphism 7 : M(A,I) — S into a finite monoid S if ™' (n(7T")) = T. It turns
out that the two definitions are in fact equivalent for subsets of M (A, I). First of all let
us note that if 7" C M(A, ) and tot1ty... € T then almost all traces in the sequence
to,t1,12,... are empty since otherwise tgtity... would be an infinite trace. Thus there
exists k € IN such that totite... =1y...tp and t; =1 for z > k.

Now suppose that 7 recognizes ' C M (A, I) in the sense of Definition 3.1. We shall prove
that p~*(1) = {1}. Indeed let tot1ty... € T and let k be such that ¢; = 1 for i > k. If

n='(1) # {1} then the set 7= (n(to))n~"(n(t2))n =" (n(t2)) .. .0~ (n(tes))n = ((tes2)) -
would contain at least one infinite trace, i.e. could not be included in 1T'. Thus, for t € T'

we have n™*(n(t)) = = (n(t))np~ (n(1))n~(n(1)) ... C T, and we see that n~*(n(T)) C T,
i.e. n recognizes T in the sense of the classical definition.
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On the other hand suppose that 5 is a morphism such that n=*(n(7")) = T. Without loss
of generality we can assume that p~*(1) = {1}. (If 5 does not satisfy this assumption then
we take the morphism n’ : M(A,I) — S*, where S* = SU {u} and u € S is a new unit
element, i.e. multiplication in S is completed by s-u = u-s = s for s € S*, and n'(t) = n(t)
ift # 1,7'(1) = u.) Then the fact that n recognizes T" in the sense of Definition 3.1 follows
immediately from the formula n='(n(to))... 77 (n(tx)) € 7 (n(to...tx)) which is valid
for all tg,..., 1, € M(A,I).

As we have seen in the discussion above, Definition 3.1 is rather artificial when applied
to subsets of M (A, I) since it involves infinite factorizations of finite traces, where, in any
case, almost all factors are in fact empty traces and so the classical definition is much
more natural. However there is one advantage of adopting Definition 3.1 in our paper:
it allows a uniform approach to finite and infinite traces so that we can avoid clumsy
case analysis in several proofs. Let us finish these remarks with again one observation.
The sets M(A,I) and M“(A,I) are recognizable subsets of M* (A, I). In fact, they are
recognized by any morphism 7 such that (1) = {1}.

Remark 3.2 A morphism n: M(A,I) — S recognizes a subset T' of M (A, 1) iff for
each infinite sequence to,t1,1s,... of traces of M(A,I) the following implication holds

= (n(to))n ()~ (n(t2)) ... NT # 0 = n~ (n(te))n ™" (n(t2))n = (n(t2)) ... €T

To prove this remark, note that if 5 recognizes T and 5= (n(to))n~ (n(¢t1))n~*(n(t2)) ... N
T # () then there exist traces rg,r1,72,... of M(A,I) such that roriry... € T and
Vi, n(r;) = n(t;). But then

n (n(to))n ™ (n(t))n = (n(t2)) - = 0~ (n(ro))n " (n(re))n = (n(r2)) ... C T

Conversely, if  verifies the condition given by Remark 3.2 then it is clear that n recognizes
T since totity ... € 71 (n(to))n~ (n(t))n~ (n(t2)) . . ..

In the sequel, the family of recognizable subsets of M, where M stands for one of the sets
M(A,I), M“(A, 1), M>(A,T), will be denoted by Rec_M.

Let M be any monoid and U a subset of M. We recall that the syntactic congruence
~p of U is defined in the following way: for all my,my € M, m; ~py my if the following
condition holds

Yo,w e M, vmiw € U < vmow € U

As it is well-known (cf. [15]), a subset U of M is recognizable iff its syntactic congruence
~r has a finite index (i.e. has a finite number of equivalence classes).

Let T C M(A,I) and L = o~ }(T) C A*, where p : A* — M(A,I) is the canonical

morphism. Then it can easily be verified that
Va,y € A%, @~y iff p(z) ~r o(y)

where ~ and ~p are the syntactic congruences of L and 7' respectively. This fact implies
directly the following well-known result:
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Remark 3.3 A subset T of M(A, I) is recognizable iff o=*(T') is a recognizable subset of
A*.

The syntactic congruence ~, for subsets L of A“ was defined by Arnold [2]. This definition
can directly be extended to subsets of M“(A, ). Let T' be a subset of M“(A, ). Then
the syntactic congruence ~p of T is the equivalence relation over M (A, I) defined in the
following way:

for t,r € M(A,I), t ~prif

Yu,v,w e M(A,I), (utv)w” € T <= (urv)w” € T and
u(vtw)? € T <= u(vrw)* € T

It is easy to verify that ~7 defined above is really a congruence over the monoid M (A, I).

To each congruence ~ over M (A, I) is canonically associated a morphism from M (A, I)
into M(A, )/ ~ mapping each trace t into its equivalence class [t].. A congruence is
said to recognize a subset T of M“(A,I) if the associated morphism recognizes T'. In
other words, a congruence ~ over M (A, I) recognizes T if for any two infinite sequences
Ug, Uz, U, . .. and vg, v1, Vg, . .. of elements of M (A, I) the following condition holds

(Vi€ N, u; ~ v;)) = (ugurug... € T < vov1vy... € T)

On the other hand, if n : M(A,I) — S is a monoid morphism recognizing a subset 7' of
M= (A, I) then the relation ~ defined as:

Yu,v € M(A,T), u~ v iff n(u) =n(v)

is a congruence recognizing 1'.
Thus a subset T' of M“(A,I) is recognizable iff there exists a congruence ~ of a finite
index over M (A, I) recognizing T

The following proposition due to Arnold [2] characterizes recognizable subsets of A“ by
means of their syntactic congruences.

Proposition 3.4 ([2]) Let L C A¥. Then L is a recognizable subset of A“ iff the syn-
tactic congruence ~y, has a finite index and recognizes L.
Moreover, if L is a recognizable subset of AY then ~, is the coarsest congruence recognizing

L.

As it is known [2, 37] there exist non-recognizable subsets L of A“ for which the syntactic
congruence ~j, has a finite index (but it does not recognize L). Thus the condition that
~, recognizes L cannot be omitted in Proposition 3.4.

Proposition 3.5 ([20]) Let T C M“(A,I). Then the following conditions are equiva-
lent:

i) T is a recognizable subset of M“(A,I),
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i) ¢~ H(T) is a recognizable subset of A,

iii) the syntactic congruence ~r of T' has a finite index and recognizes T .

Moreover, if T € Rec.M*“(A,I) then ~7 is the coarsest congruence recognizing T .

Proof: Let L = ¢7'(T) C A“. We prove three claims which yield directly the thesis.

Cramm 1. Let ~p and ~7 be the syntactic congruences of T" and L respectively. Then
Ve,y € A", a ~pyiff o(z) ~7 o(y)
This claim results from the following equivalences:

T ~LY
iff  Vu,v,we A, (uzv)w® € L < (uyv)w” € L and
u(vew) € L < u(vyw)* € L
iff  Vu,v,we A% (o(u)e(z)e(v))p(w)” € T = (e(u)e(y)e(v))e(w)” € T and
e(u)(p(v)e(@)e(w))” € T <= o(u)(p(v)e(y)e(w))” € T
it o(x) ~r o(y)

CrLamv 2. Let ~, and ~; be congruences over A* and M(A, ) respectively and
suppose that they verify the following condition

Va,y € A%, a~y,y iff p(z)~ o(y) (1)

Then ~,, recognizes L iff ~; recognizes T
Moreover, the quotient monoids A*/~,, and M(A, )/~ are isomorphic and the congru-
ences ~,, and ~; have the same index.

Direct verification shows that if ~,, and ~; verify (1) then the mapping ¥ : A*/~,, —
M(A,I)/~; defined by
Vo e A, W((el~,) = [$(0)]m,

is an isomorphism between the quotient monoids A*/~,, and M(A,I)/~;. Since the in-
dices of the congruences ~; and ~,, are equal to the number of elements in the correspond-
ing quotient monoids, the congruences ~; and ~,, have the same index. Moreover, since for
each sequence xg, x1, 2, ... of elements of A*, xowixy... € L iff p(zo)p(z1)p(a2)... €T,
~,, recognizes L iff ~; recognizes T'.

Cram 3. Let T' € Rec.M“(A,I) and let ~ be a congruence recognizing 7. Then the
syntactic congruence ~p is coarser than ~.

Let t ~ r for t,r € M(A, ). Since ~ recognizes T it is clear that for all u,v,w € M(A,I)
(utv)w” € T <= (urv)w” € T

and
u(vtw)” € T <= u(vrw)* € T,
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that is ¢ ~p 7.

Now we can proceed to the proof of the proposition.
(i) = (ii) Let ~; be a congruence of a finite index recognizing 7'. Then we define a
congruence ~,, over A* in the following way

Va,y € A%, ar~y,y if p(z)~ o(y)

By Claim 2 ~,, has a finite index and recognizes L, hence L is a recognizable subset of
Av.

(ii) = (iii) If L is recognizable then by Proposition 3.4 the syntactic congruence ~p,
recognizes L and it has a finite index. Moreover, it is the coarsest congruence recognizing
L. Then by Claims 1 and 2, ~7 recognizes T, has a finite index and by Claim 3 it is the
coarsest congruence recognizing T

(iii) = (i) Obvious. O

3.2 Weakly recognizable trace languages

One of the basic results concerning recognizable sets of infinite words states that the
families of recognizable and weakly recognizable subsets of A“ coincide. The aim of this
section is to prove that this result holds for infinite traces as well.

For a finite monoid S we set P(S) = {(s,e) € S x S|s-e=sand e-e = e}. Following
the terminology of Perrin,Pin [37] we call elements of P(S) linked pairs. Moreover, we
recall that an idempotent is an element ¢ € S such that e¢-e = e.

Definition 3.6 Let n : M(A,I) — S be a morphism into a finite monoid S and let
T C M“(A,I). Then n weakly recognizes T if

r= U »27's)mn ()

(s,.e)ePr(S)

where Pr(S) = {(s,e) € P(5) [ n7(s)(n™'(e))* € T}.
A subset T of M“ (A, I) is weakly recognizable if it is weakly recognizable by some morphism
into a finite monotd.

Although the proof that each recognizable subset of M“(A,I) is weakly recognizable is
much the same as for subsets of A“ [35, 37], we give it in detail for the sake of completeness.
This proof is based on the following lemma, which is given in [37], where also a simple
direct proof is presented.

Lemma 3.7 ([37]) Let Z be a finite or infinite alphabet, let S be a finite set and let f
be a mapping from Zt in S. Then for each infinite sequence zg, 21, 23, ... of words of Z+
there exist an infinite increasing sequence of integers 0 < 19 < 17 < t3... and an element
e € S such that

flziy - zi,—1) =€ foreach k>0 and m >k
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Proof: This lemma can also be deduced from the following infinite version of the classical
theorem due to Ramsey [24]:

Let X be an infinite set, Pr(X) the family of k-element subsets of X and
X : Pe(X) — S a “coloring” mapping associating with each k-subset of X a
“color” from a finite set S of colors. Then there exists an infinite subset Y of
X such that all k-subsets of Y have the same color:

\V/Zh Z2 g Y, |Z1|:|Z2|: k = X(Zl) = X(ZQ)

In our case, the coloring mapping x : Py(IN) — S is defined by

x({z,7}) = flzi---zj_q) forall 0 <e < g

By Ramsey’s theorem there exist an infinite subset Y of IN and an element e of S such
that x({¢,j}) = efor all ¢, € Y, ¢ < j. The elements of Y arranged in increasing order
constitute the required sequence. a

Lemma 3.8 Let n : M(A,I) — S be a morphism into a finite monoid S and let
totita... € M¥Y(A,I), where each t;, ©+ > 0, is in M(A,I). Then there exists a linked
pair (s,e) € P(S) and an infinite increasing sequence of integers 0 < ig < i1 < i3... such
that

n(to...ty—1) =

Nty .- ti,,—1) = ¢ for all k>0
n~ (o)) (n(t))n = (n(t2)) ... S =1 (s)(n~"(e))*

Proof: From Lemma 3.7 applied to the sequence ty, 11,15, ... and to the morphism n we
deduce that there exists an infinite sequence 0 < ig < #1 < ¢3...such that n(¢,;, ...t 1) =
eforall k > 0and m > k. Let s =n(tg...t;,-1). Observe that (s,e) is a linked pair since

€€ = T](tio . -til—l) . T](til . .ti2_1) = T](tio . .ti2_1) = ¢

Now it suffices to observe that

7 (n(te)) - 07 ((ti—1)) S o7 (o - -ty —1)) = 07 (s)

and

7 (n(ta) - (i, —1)) S0 (e, - tiyy, 1)) = 07 (e) for all k > 1
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Proposition 3.9 ([20]) Let n : M(A,I) — S be a morphism into a finite monoid S
and let T C M“(A,I). Then the following conditions are equivalent:

i) n recognizes T,

i) V1,80 € 8, 7 (s1)(n 7 (s2))* NT # 0= 07 (s1)(n " (s2))* € T,
wi) ¥(s,e) € P(S), n7H(s)(nH(e)) NT #0 = n~"(s)(n~"(e))* €T

Proof:
(i)=(ii) Let t1,t5 be elements of M(A,I) such that ¢; € p7'(s1) and ¢, € p7!(s2).

Then
1™ (s1) (™ (s2))” =07 ((t)n ™ (n(t2))n ™ (n(t2)) - ..

and it suffices to apply Remark 3.2.

(ii)=(iii) Obvious.

(iii)=(i) Suppose that n verifies (iii) and let #g,¢1,%5,... be a sequence of traces of
M (A, I) such that tot1ty... € T First observe that by Lemma 3.8

(ko)™ (n(t)n~H (n(t2) - - S (s)(n~"(e))” (1)
for .sﬁom((e”l.i)nked pair (s,e) € P(S). Hence, we have n7(s)(n7'(e))* N T # () and since 7
| T () C T @

From (1) and (2) we get finally:

™ (n(te))n ™ (n(t))n~ (n(t2)) . ... .. cT

and therefore 1 recognizes T a

Now we are able to achieve the proof that each recognizable subset of M“(A, I) is weakly
recognizable.

Lemma 3.10 ([20]) Letn: M(A,I) — S be a morphism into a finite monoid S recog-
nizing a subset T of M“(A,I). Then n weakly recognizes T.

Proof: To get the thesis it suffices to show that if n recognizes T' then for each t € T'
there exists a linked pair (s, e) such that

ten(s)nHe) CT (1)
Let t = tot1ty... € T, where all ¢;, ¢ > 0, belong to M(A, ). Then by Lemma 3.8,

ten=t(n(to))n™ (n(t))n (n(t2)) ... S~ (s)(n~"(e))*

for some linked pair (s,¢e) € P(S) and by Proposition 3.9, since t € n~!(s)(n™(e))*NT #
(), we obtain (1). O
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It can be shown that the converse of Lemma 3.10 does not hold even in the case of infinite
words; a morphism 5 can weakly recognize a subset L of A without recognizing it. Nev-
ertheless, it turns out (cf. [35, 37]) that given a morphism n : A* — S weakly recognizing
a subset L of A“ the Schiitzenberger product [38] nOn : A* — SOS recognizes L. We
will extend this result to trace languages by generalizing the Schitzenberger product <
to the diamond product <j.

Let S and @) be two monoids. The diamond product <;(S, Q) of S and @ is a monoid
defined in the following way. Elements of <;(S, Q) are subsets of the set S x P(A) x @ x
P(A). The multiplication in <;(S, Q) is specified by the following formula:

Ry o Ry = {(s182,01 U az,¢1G2, 51 U B2) |
(31,CY1,Q1751) € Ry, (5270527(]2,52) € Ry and By x a3 C ]}

for Ry, Ry C S x P(A) x Q x P(A).

To see that the multiplication in <;(S, Q) is really associative one can verify easily that

both (Ry o Rz) o Rz and Ry o (Ry 0 R3) consist of all quadruples of the form

(s15283, a1 U ag U as, q19243, B1 U B2 U B3)
such that

V1 <i<3, (siyi,qi,0:)) € Riand V1 <1< 3 <3, fixa; C1

Ifn: M(A, 1) — S, : M(A,I) — @ are morphisms into the monoids S and ) then
<>[(T]1, 7]2) . M(A, ]) — Q[(S, Q)
is a morphism defined by

Cr(naym2)(t) = {(m (), alph(u),na(v), alph(v)) | u,v € M(A,I) are such that ¢t = uv}

We shall show that <j(nq,7n2) is really a morphism from M(A,I) into $p(S,Q). Let
t=tyty € M(A,I). Then $r(ng,n2)(t) = {(n(u), alph(u),n2(w), alph(w)) | t1ts = vw}.
By Lemma 2.6, t;t; = ww if and only if there exist traces zg, z1, 22, 23 of M (A, I) such
that

11 = zo21, ty = 2223, U = Zoz2, W = z123 and (z1,22) € [

Therefore

Cr(n1,m2)(2)
= {(n1(2022), alph(z022),n2(2123), alph(z123)) | t1 = zoz1, t2 = 2223 and (21, 22) € [}
{(

1
m(zo)m(z2), alph(zo) U alph(zs),na(21)na(23), alph(21) U alph(zs)) |
11 = zo21, ty = 2923 and (z1,29) € 1}

= {(771(20)7alph(ZO)v7(72(21)7alph(21)) | t1 = zoz1} o {(m(22), alph(22),n2(23), alph(z3)) | t2 = 2223}

= Or(n1,m2)(t1) o O, m2)(t2)
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The diamond product being defined, we now prove an auxiliary lemma.

Lemma 3.11 Letn: M(A,I) — S be a morphism into a finite monoid S, v = <r(n,n)
and uw € M“(A,I). Then for each linked pair (s,e) € P(S) such that

wen T (s)(n7 (e)”

and for any sequence ug,uy,Us, ... of traces of M(A,I) such that u = uguqusy... the
following inclusion holds

Y (o) )y (v (wa) )y H(y (w2)) - S 7 (s) (7 (e))”

Proof: Let v = vgv1v;... be an infinite trace of M“(A, I) such that
Vi € IN, v; € M(A, 1) and Cr(n,n)(vi) = Cr(n, n)(w) (1)

To prove the thesis we should show that v € n=!(s)(n™(e))~.
Since u € n7*(s)(p7*(e))“ there exist traces wy € p~'(s) and w; € n~'(e), i > 1, such
that

UUqlsy ... = U = WeW W3 . . . (2)

We construct inductively two infinite strictly increasing sequences of integers 2,21, %2, . . .
and jo,Jj1,J2,- -

o set 10 =0 and jo =0
o if j; is defined then i;44 is the least integer greater than ¢; and such that

wo -+ wj, < g Uiy, 1 (3)
o if 2541 is defined then jii; is the least integer greater than j; such that

Ug- Uy -1 < Wo -+ Wy, (4)

Equation (2) ensures that all inductive steps of this construction are always feasible. Now
we set zg = wg and, for k > 0, zp41 = wj, 41 ... wj,,, and yp = u;, ... u;,,, 1. Conditions

(3) and (4) imply that
zo- -2t <WYo..-yr < 20...252k+1, for k>0 (5)

Now we have
1(z0) = n(wo) = s

and since e is an idempotent

N(zrg1) = n(wje41) ... n(wj,, ) =e...e=e¢ for k>0

Therefore we get
20 €n '(s) and zx € n~'(e), for k>1 (6)
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From (5) there exist two sequences y(,y, vy, ... and y,y), vy, ... of traces of M(A,I)
such that:

yézzo,yo---ykyfc_i_l:20---Zk_|_1 and ZO---Zk'yg:yo---yk for £>0

We shall prove that y, = yry) for k > 0 and 2z, = y;_,y; for £ > 1.

Indeed we have yhyl = 2oy = yo and for k >0, (yo- - yryhyn)¥isr = (20 2541 )yhys =

Yo" YrYrt1, which after canceling yo - - - yx on the left gives y, ,y; ; = yrq1. Similarly,
since (2o 2kY) )Yhg1 = Yo YkVhky1 = 207" ZkZht1 We get Zpt1 = YrYjpq-
Now we set xp = v;, ... v;,, -1 for £ > 0. From (1) and from the definition of x; and y;

it follows that <r(n,n)(xx) = <1(n,n)(yx). Hence there exist two sequences xf, x, x5, . ..
and x(, x], x5, ... of traces of M (A, I) such that:

i = wpry,n(wy) = n(yy) and n(zy) = n(yy), vk =0

Now we have vgvivy... = xoz12y ... = zg(zgey)(xfzy) ... and n(zg) = n(yy) = n(20), and
n(xfaiey) = n(Yryie:) = n(zkg1) for k> 0. Therefore vovivy... € 7 (s)(n7"(€))* and
the lemma is proved. a

Corollary 3.12 Let T be a subset of M“(A,I) weakly recognized by a morphism n :
M(A,I) — S into a finite monoid S. Then the morphism <r(n,n) : M(A,I) —
&r(S,S) recognizes T'.

Proof: Let v = Oy(n,n) and suppose that u = wouquy... € T, where Vi € IN, u; €
M(A,I). Since  weakly recognizes T' there exists a linked pair (s,e) € P(S) such that

we (s () C T
But by Lemma 3.11 we get
7 (o)) (v (wa))y T (V) - S 7 (s) (7 (e)”

ie. 7 (y(uo))y T (v (w))y 7 (y(u2) ... € T 0

As a corollary to Lemma 3.10 and Corollary 3.12 we obtain the following result.

Theorem 3.13 A subset T' of M“(A,I) is weakly recognizable if and only if it is recog-
nizable.

The rest of this subsection is devoted to an extended discussion of the structure of diamond
product. Since this discussion does not affect the other sections, it can be skipped at the
first reading.

An equivalence relation ~ over M (A, I) is said to be independence invariant if it satisfies
the following condition for all ¢1,%9,r1,72 € M(A,I)

if t1~ty and r;~ry then (t,r1) €1 & (ta,re) €1
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Note that this definition says simply that if X; and X, are equivalence classes of ~ then
either all elements of X; are independent of all elements of X; or all elements of X,
depend on all elements of Xj.

A relation ~ over M (A, I) is an independence invariant congruence if it is an independence
invariant and a congruence over M(A,I), i.e. it satisfies the previous condition and
moreover for all t1,%9,r1,7 € M(A,I)

if tl ~ tg and ™ Ty then tlT'l ~ t2r2

Let ~ be an independence invariant congruence over M(A,[) and let H = M(A,I)/ ~
be the quotient monoid of M(A,I) by ~. By ¢ : M(A,I) — H we shall denote the
canonical morphism mapping each trace t € M (A, I) to its equivalence class under ~. Now
we can generalize the construction of diamond product <;(S, Q) by defining the monoid

&r(S,Q, H), which elements are subsets of S x HxQ x H and for Ry, Rs C SxHxQx H,
the multiplication Ry o R, yields the following set:

{(5152791927(]1%7h1h2) | (Siagi7Qi7hi) S Riv 1= 1727 and
Vit € 7 (h),Yts € £71(g2), (1, t2) € 1}

In consequence, the diamond product <;(n1,n2) of morphisms, where 5y : M(A, I) — S
and 7y : M(A,I) — @, generalizes to the morphism

Cr(n,n2, &) M(A 1) — <4(S,Q, H)
defined by

Cr(n1, 2, €)(t) = {(m(u), &(u), n2(w), E(w)) | u,w € M(A,I) are such that ¢t = uw}

It is straightforward to verify that the definitions of <;(S,Q, H) and <y(n1,1n9,&) are
sound and that all proofs involving the diamond product can be carried out without any
substantial modifications with this generalized product. In fact, the diamond product
defined previously is a special case of the generalized diamond product. To see it, let us
note that the equivalence relation ~ defined by:

\V/tl,tg € M(A, ]), tl ~ tg if Cllph(tl) = Cllph(tQ)

is an independence invariant congruence and the quotient monoid H = M (A, I)/ ~ is then
isomorphic with the monoid (P(A),U, #) of all subsets of A, where the monoid operation
is the set union and the neutral element is the empty set. Thus we see that <;(S5, Q) =
&r(S,Q,P(A)) and Cr(m,n2) = <r(n1,n2, alph), where alph : M(A, 1) — P(A) is the
morphism mapping each trace ¢ to its alphabet alph(t).

Let ~; and ~~; be two independence invariant congruences such that ~; C ~; and let H; =
M(A,I)/ ~;, 1 =1,2. Then the monoid Hj, is a quotient of H; and similarly <;(S, @, Hs)
is a quotient of <y(S5, @, Hy). This remark indicates that it would be interesting to find
the greatest independence invariant congruence, since, if it exists, it would induce the
smallest diamond product which is a quotient of all other diamond products, so is the
best in some sense.
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Let ~, be the equivalence relation over M (A, I) defined in the following way:
tl Xy tg if \V/TELM(A’I)7 (tl,r) €I<x:>(t2,T) el

This relation is the greatest independence invariant congruence. Indeed, immediately
from the definition it follows that ~, is the greatest independence invariant whereas the
fact that ~ is also a congruence over M (A, I) follows from the following observation

\V/tl,tz,T’ € M(A,]), (tth,r) € I iff (tl,r) S I and (tg,r) € I

To express ~, in a more explicit way note that for t,r € M(A,I), (t,r) € [iff (t,p(a)) € 1
for each a € alph(r). Thus

tl Xy tg IHVGEA (tl, ( ))€]<:>(t2,<,o(a))€]

But for each trace t, {a € A | (t,p(a)) € I} = A\D(alph(t)), where D(3) = {c € A |
b € 3,(b,c) € D} for 5 C A. Thus we get

t1 ~, ty iff  D(alph(ty)) = D(alph(ts))

The quotient monoid H, = M (A, I)/ ~, is isomorphic with the monoid FDp = ({D(5) |
B C A},U,0), whose elements are subsets of A of the form D(3), where  ranges over
P(A), the monoid operation is set union and the empty set § = D(() is the neutral
element. Indeed, the previous condition implies that the mapping f such that f([t]~,) =
D(alph(t)) is a bijection between H, and FDp and moreover we have

f(ltata]x,) = D(alph(litz)) = D(alph(ty)) U D(alph(t2)) = f([t:]x,) U f([t2]x,)

Thus
<>I(77177727€g) : M(Aaj) B <>I(S7Q7F,DD)

is the best of all diamond products, where ¢, : M(A,I) — FDp is the morphism
defined by &,(t) = D(alph(t)) for t € M(A,I). We can also define multiplication over
&r(S,Q, FDp) in a more explicit way, without any reference to the mapping ¢,. First let
us note the following fact

Lemma 3.14 Let t1,t € M(A,I), a; = D(alph(t1)), aa = D(alph(ts)). Then t; and t,
are independent iff D™ (ay) x D™ (aq) C I, where D7) ={a € A| D(a) C 5}.

Proof: First note that alph(t;) € D™'(«;), i = 1,2. Thus D' (ay) x D™ (ay) C I yields
alph(ty) x alph(ty) C I, i.e. (t1,12) € 1.
)

Now suppose that D' (ay) x D7!(az) is not contained in I and (a,b) € D N (D

D™ ay)). Since b € D7 (ay) and (a,b) € D we have a € D(b) C ay = D(alph(t,
there exists ¢ € alph(ty) such that (a,c) € D. From this fact and from a € D™!(
results that ¢ € D(a) C ay = D(alph(ty)). Therefore for some d € alph(ty), (c,d) €
hence (d,c) € D N (alph(t1) x alph(ty)) and t,t; are not independent. D

(Ofl)
), i
o )

Using this lemma we obtain the following formula for the multiplication in $;(S, Q, FDp):
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Ry o Ry = {(s152,01 Uz, q1G2, 41 U B2) |
(si, 00,4, 3i) € Ry i = 1,2 and D7(B1) x D™ (ap) C I}

for Ri,Ry € S X FDp x @) x FDp. As we have remarked previously, the diamond
product <j plays the same role for traces as the Schiutzenberger product for words. But
the relation between these two products is even more closer.

Let I = (. Then FDp = {0, A} since D()) = § and D(3) = A for each nonempty
subset § of A. Note also that the canonical mapping ¢ : A* — M(A, ) is a monoid
isomorphism, which allows us to identify these monoids. Moreover, it turns out that in
fact the diamond product Og(n1,7m2,¢,) in the case of empty independence relation and
the Schiitzenberger product 1;$ne of morphisms coincide.

3.3 Closure properties of recognizable trace languages

In this subsection we examine basic closure properties of various families of recognizable
trace languages. Let us note that the closure under union, intersection, complementation
and concatenation can also be proved by means of Remark 3.3 and Proposition 3.5 ([9,

20, 33]).

Proposition 3.15 The families Rec_ M(A,I) , Rec.M“(A,I) and Rec_M™(A,I) are

closed under the boolean operations of finite union, finite intersection and complement.

Proof: Throughout this proof, M stands for one of the sets M(A,I), M“(A,I) or
M>(A,I). Let n : M(A,I) — S be a morphism into a finite monoid recognizing a
subset T of M. From Remark 3.2, for any sequence g, t1,t,,... of finite traces either

n~ (n(to))n~ ()~ (n(t2)) ... C T

or
™ (o))~ (n(t:))n " (n(t2)) ... C T,
i.e. 1) recognizes the complement T of T' as well.

Now let n;, : M(A,I) — S; be morphisms into finite monoids recognizing subsets T;
i =1,2, of M. Let v: M(A,I) — S1 x Sz be the morphism into the direct product of
S1 and Sy defined by v(t) = (n1(t),n2(t)) for each trace t of M(A, ). We shall show that

~ recognizes Ty N T5. For any finite trace { we have
v () = {u € M [ m(u) = m(t) and na(u) = na(t)} = 07" (m (1)) Nyt (n2(1))
Assume that tot1ty ... € Th N Ty, where each t¢; belongs to M (A, I). Then for i = 1,2,

Y () v (v ()Y T (Y (E2)) - - S i (malto) )i (i) )mi t (nilt2)) ... € T

and we see that v recognizes T1NT,. In this way we have proved that Rec_M is closed under
complement and finite intersections. The closure under finite union follows immediately
since Ty U Ty can be written as T3 N T5. O
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Note that Proposition 3.15 implies that a subset 7" of M*(A, ) is recognizable if and
only if the sets T'N M (A, I) and T N M*(A,I) are recognizable.

The closure of the family Rec_M (A, I') under multiplication was proved independently by
Fliess [17], Cori,Perrin [9] and Ochmanski [33]. We extend this result by proving that the
family Rec_M>(A, 1) is closed under multiplication.

Proposition 3.16 ([20]) IfTi and Ty are recognizable subsets of M (A, I) then Ty - Ty
is also recognizable.

Proof: Let n; and 53 be morphisms into finite monoids recognizing T} and 75 respectively.
We shall prove that <j(n1,n2) recognizes Ty Ts.

Let t € T\T5,t = t1ty for some t; € T} and t; € T3, let ug,uy,usq,... be a sequence
of elements of M(A,I) such that t = upujuz.... By Lemma 2.6 there exist sequences

ug, up, uh, ... and ug, uf,uf, ... of traces of M(A, ) such that
uiul! =wu; forall i >0 (1)
upuiuly ... =t; and uguiul ... =1, (2)
(ui,u;) € I forall i< j. (3)

Let vg, v1,vg,... be a sequence of elements of M (A, I) such that

Vi, Or(ny,m2)(vi) = Or(nr,m2) (ui) (4)

To prove our claim we have to show that vovivy... € T1T;. But (4) and (1) imply that
for each 7 there exist traces v!, v of M(A,I) such that

) T2

1o ! n

vivy = vi, m(vi) = mu(up) and  n2(v) = n2(uy) (5)
and
alph(v)) = alph(u}) and alph(v]) = alph(u!) (6)
The last condition and (3) yield
(vf,v5) € I forall @ <j (7)
Let r; = vjvivh ... and ry = vjvivy.... Since 7y recognizes Ty and t; € T4, (5) implies
that ry € Ty. Similarly, we obtain r € T5. But from (7) we get by Lemma 2.6 that
VoU1Vz . .. = (vgug ) (viv])(vavy) . .. = (vhvivy ... )(vgvyvy .. ) = riry € ThTy
O
As it is well-known the family Rec_.M(A,I) (and hence Rec_M>(A,I) as well) is not

closed under finite iteration. The standard counterexample is the following

Example 3.1 Let A = {a,b}, I = {(a,b),(b,a)} and T = {p(ab)} € Rec_.M (A, I). Then
T = {o((ab)®) | n > 0} and @ (T™) = {z € {a,b}* | |z].=|z|s } is not a recognizable
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subset of A*, hence, by Proposition 3.3, T is not recognizable.

On the other hand, it is worth noticing that 7% = {¢((ab)*)} is a recognizable subset of
M<“(A,I) since p~H(T%) = {z € A¥ | |z|.=|z|s= oo} is a recognizable subset of A“. The
syntactic congruence of 7% has four classes {¢(1)}, {¢(a”) |n > 1}, {¢(6") | n > 1} and
{p(a*b™) | k,n > 1} and, as one can verify immediately, it recognizes T“.

The following example shows that Rec_ M (A, I) is not closed under infinite iterations.

Example 3.2 Let A = {a,b,c}, T = {(a,b),(b,a)} and T' = {¢(ab),o(c)}. Obviously T
is recognizable. To show that 7% = ¢({ab, c}*) is not recognizable it suffices to observe

that the syntactic congruence of T has infinite index.
We set U = T“. Then ¢(a™) ~y p(a™) iff n = m. Indeed, for n # m we have

(0" )p(a™)p(1)(p(c))” = @(a™b"c”) ¢ U

while

p(0")p(a")p(1)(p(c))” = p((ab)"c”) € U

These two examples raise the question about when a finite or infinite iteration of a subset
T of Rec_.M(A, 1) is actually recognizable. As for the finite iteration, this problem was
studied extensively (cf. [31, 34, 32, 25]) and many different sufficient conditions are
known. The most useful of them is the one given by Métivier [31] (and also announced
independently by Ochmariski [33]). In order to formulate this condition we introduce
important notions of connected traces and trace components.

A non-empty subset 3 of A is said to be non-connected if there exist non-empty sets 3y, 5,
such that 3;UB; = B8 and 8 x 33 C I; otherwise 3 is connected. For each ) # 3 C A there
exists a unique family {Bi,..., B} of non-empty connected sets such that Ut 3 = 3
and 3; x 3; C I for i # j. The sets B4, ..., By are the connected components of £3.

A non-empty trace t of M (A, I)is connected if alph(t) is connected. If ¢ is non-connected
then there exists a family {¢;,...,¢;} of pairwise independent connected non-empty traces
such that ¢t = ¢;---t;. The traces ty, ..., are called the connected components of t. Note
that then {alph(t1),...,alph(ty)} is the family of connected components of alph(t). This
concept has a natural interpretation in terms of dependence graphs. A trace t is connected
iff its dependence graph A(t) is connected. Otherwise A(t) consists of several connected
components [V;, F;, A, 1 < i < k, all of them being dependence graphs, and the traces
t; = A=Y([V;, E;, \]) are precisely the connected components of .

Let us consider for instance the trace ¢ from Example 2.1. Then alph(t) = A has two
connected components 3; = {a,b,c¢} and By = {d,e}. Similarly the trace ¢ has two
connected components, t; = p(acbaach) and t3 = p(ded).

Proposition 3.17 ([31]) Let T be a recognizable subset of M(A, I) such that each trace
t of T is connected. Then T™ is recognizable.
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3.4 Normal form of recognizable languages of infinite traces

In this subsection we present a normal form theorem for recognizable subsets of M“(A, I)
— Theorem 3.22. This theorem shows that a subset T of M“(A, I) is recognizable iff it
can be constructed from specific recognizable subsets of M(A, I).

We begin with a lemma providing an interesting sufficient condition ensuring the recog-
nizability of the infinite iteration 7% of subsets T of M(A,I) .

Proposition 3.18 Let T' be a recognizable subset of M(A,I) such that T-T CT. Then
T% s recognizable.

Note that the condition T'- T C T is obviously equivalent to T'= T'*.

Proof: Let n : M(A,I) — S be a morphism into a finite monoid S recognizing T
such that p7*(1) = {1}. (As we have seen in the discussion following Definition 3.1 there
always exists such a morphism for any recognizable subset of M(A,I)). We shall show
that n weakly recognizes the set T¥ N MY (A, I).

Let t € T N M“(A,I) and let to,11,12,... be a sequence of traces of 7'\ {1} such that
t = totity.... Applying Lemma 3.8 to 1 and sequence tg,11,%s,... we obtain an infinite
sequence 0 < 17 < i3 < i3 < ... of integers and a linked pair (s,e) € P(S) such that

n(to---ty—1)=s and n(t, - 1;,,-1) =efor k>1 (1)

Now note that since 7'- 17" C T, all the traces (lo---1;,-1) and (t5, ---1;,,-1), k > 1,
belong to T', thus s, e € n(T'). But 5 recognizes T', hence n~(n(T')) = T, i.e. in particular
n~(s) CT and p~'(e) C T, which together with (1) implies that

t =tolity... € n7H(s)(n7 (e))” CT¥ N M (A, )

which proves that n weakly recognizes TN M“(A, I). If TN M(A,I) is not empty then
1 € T and we have clearly TN M(A,I) = T™*. Since Tt = T we deduce that n recognizes
TN M(A,I). O

Corollary 3.19 Let T C M(A,I). If T* € Rec.M(A,I) then T* € Rec.M™(A,I).

Proof: Follows directly from Proposition 3.18 since T - T* C T™. O

Note that Example 3.1 shows that the inverse of Corollary 3.19 does not hold, recogniz-
ability of T' and T does not imply that 7™ is recognizable. The interest of Corollary
3.19 stems from the fact that, as we have mentioned previously, numerous sufficient con-
ditions ensuring the recognizability of the finite iteration 7™ of a subset T' of M(A,I)
were discovered recently and all of them may now be applied to the infinite iteration as
well. In particular from Proposition 3.17 we get the following condition that will be used
extensively in the sequel.

Corollary 3.20 Let T' be a recognizable subset of M(A, 1) such that all traces of T are
connected. Then T is a recognizable subset of M (A, T).
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Sometimes it is useful to consider the set P(A) as a commutative monoid with the set
union U as the monoid operation. Then the mapping alph : M(A,I) — P(A) associating
with each trace ¢ its alphabet alph(t) is a monoid morphism.

A morphism 5 : M(A,I) — S is said to be alphabetic if for all traces t1,t5 of M(A,I),
n(t1) = n(ty) implies alph(ty) = alph(ty). Let n : M(A,I) — S be a morphism and
let 7 : M(A,I) — S x P(A) be the direct product of the morphisms 5 and alph,
Vte M(A,I), 7(t) = (n(t),alph(t)). For each trace t € M(A, I) we have

7 (@) =07 (n(t)) 0 {u € M(A,I) | alph(u) = alph(t)} S n~"(n(t))

Thus if n recognizes a subset T of M*(A, I) then 7 recognizes this set as well. Moreover,
77 is alphabetic. Thus we obtain the following result:

Lemma 3.21 A subset T' of M (A, I) is recognizable iff it is recognized by an alphabetic
morphism into a finite monoud.

And now we can pass to the main result of this subsection.

Theorem 3.22 A subset T of M“(A,I) is recognizable if and only if T is a finite union
of languages of the form

UVE - V¥
where U, Vi,..., Vi are recognizable non-empty subsets of M(A,I) such that there exist
non-empty connected subsets By, ..., By of A verifying Vi, 1 <i <k, Yt € V;, alph(t) =
B; a7zd‘v’i,j,1§i<j§k, BZXB]g]

Proof: Corollary 3.20 and the fact that the family Rec_.M> (A, I) is closed under finite
union and multiplication show that each trace language of the form described by the thesis
is recognizable.

Now suppose that T' € Rec.M“(A,I). Let n : M(A,I) — S be a morphism into a finite
monoid S recognizing T'. From Lemma 3.21, we can assume without loss of generality
that 7 is alphabetic. Moreover from Lemma 3.10 n weakly recognizes T' and thus

r= U »27's)mn ' (e))
(s,.e)ePr(S)
where Pr(S) = {(s,e) € P(S) | 0 # n~'(s)(n~*(e))* € T} and it suffices to show that
each of the sets n7'(s)(np™*(e))* has the required form.
In the sequel, we denote by R the set n7'(e). Let (s,e) € Pr(S) and let B be a subset of

A such that
YVt € R, alph(t) =B (1)

Let Bi,...,Bi be the connected components of B. Let I’ = I N (B x B) and [; =
IN(B; x B;) be the restrictions of [ to the sets B and Bj; respectively. It is easy to prove
(see e.g. [10]) that the mapping x from N = M (B, 1) x ... X M(Bg,I}) into M (B, I')

28



defined by x(t1,...,tk) = t1...1) is an isomorphism. Then R C M(B,I') and x~!(R) is
a recognizable subset of N. By Mezei’s theorem (Proposition 12.2, page 68, of [15]) there
exist an integer n and languages R;; € Rec.M(B;,1;) ,for 1 <i <nand 1 <j <k,
such that

X_I(R) = U Ri,l X ... X R“C

1<i<n

Let RZ = X(Ri,l X ... X R%k) = Ri,l e R“C, we obtain

R= |J R

1<i<n

We claim that
R = U R:RY
1<i,j<n

One inclusion is obvious. Using Lemma 3.7 on the existence of Ramsey’s factorizations
we show the opposite inclusion. First note that Rt = R since R- R =n"'(e)-n7!(e) C
n'(e-e) =n"'(e) = R. Now let f be any mapping from R into the set {1,...,n} such
that for each r € R, r € Ry(;). Let ro,71,72,... be any infinite sequence of elements of
R. From Lemma 3.7 it follows that there exists [, 1 < [ < n, and an infinite sequence
0 <ig <1y <iy...suchthat f(r; ...ry,,—1) =1 forall k> 0. Thus roriry... € R, Ry,
where m = f(rg---r,-1) and the opposite direction is proved.

T s)nHe)) = U nT(s)RiRy, .. RY,

1<i,j<n

Moreover from alph(r) = B for all r € R, we deduce that alph(r) = B; for all r € R; ;
and therefore the theorem is proved. a

Hence we obtain

4 Rational, c-rational and sc-rational sets of traces

The aim of this section is to study the relationship between recognizable subsets of
M>(A,I) and the languages which can be generated starting from atomic actions and
applying modular operators (union, concatenation and iterations). We introduce three
families of trace languages — c-rational, sc—rational and rational trace languages and
prove that the first two of these families coincide with the family of recognizable trace
languages and are included in the family of rational sets of traces. Moreover, we show a
kind of normal form theorem for rational trace languages.

In the sequel, for any trace t € M*(A, I) we shall denote by C(t) the set of connected
components of t (cf. Subsection 3.3). Moreover, for a subset T of M*(A,I) we set

C(T) = UtET O(t)-

We begin with some auxiliary lemmas.

Lemma 4.1 IfT is a recognizable subset of M (A, I) then C(T') is recognizable as well.
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Proof: Suppose that 7' is recognized by a morphism n : M(A,I) — S. Let 7 :
M(A,I) — S x P(A) be the alphabetic morphism defined by 7(t) = (n(t), alph(t)) (cf.
Subsection 3.4). We shall show that 7 recognizes C(T').

Let wo, u1, ug, ... and vg, vy, va, ... be two sequences of finite traces such that Ve,7j(u;) =
77(v;). This implies that

Vi,  pui) =n(v) (1)

and
Vi, alph(u;) = alph(v;) (2)
Let u = uguquz ..., v = vov1vy. .. and suppose that u € C'(T"). Then there exists a trace

r € M*®(A,I) such that (u,r) € I and ur € T. Let ro,r1,r2,... be any sequence of
elements of M (A, I) such that r = roryry.... Since (u,r) € I, we have

(ugyr;) €1 for all 7, (3)

Therefore ur = (uguius .. .)(rorirz...) = (uoro)(usry)(uarz) . ... Now by (1) we get for all
¢, n(uir;) = n(vir;). Hence, as ur € T and 5 recognizes T', we obtain that

(voro)(v1ry)(varg) ... €T
But (2) and (3) imply that (v;,r;) € [ for all ¢, 5. Thus, we have
or = (vov1va ... )(rorire .. .) = (voro)(vire)(vare) ... € T.

Now observe that (2) implies alph(u) = alph(v), thus v is connected iff u is connected.
Summarizing we see that v is a connected component of the trace vr € T, i.e. v € C(T)
and 7 really recognizes C(T'). O

Lemma 4.2 LetT C M>(A,I), Ty =TNM(A,I), T, =TNM“(A,I) and n = card(A).
Then

n

T = \J(I;T)FT;

and

Proof: Lett € T*,t =tg- - - t,, where each t; belongs to T'. Since for all u € M“(A, )
and v € M*(A, 1), u-v is defined iff alph,(u) x alph(v) C I, the sequence to, ..., 1, can
contain at most card(A) traces of M“(A, ). Thus there exists k, 0 < k < card(A), such
that ¢ € (T7T;)*T;. This proves the inclusion

* " * krpx
k=0
The inverse inclusion is obvious. The proof of the second formula is similar. a
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Corollary 4.3 Let T be a recognizable subset of M (A, I) such that all traces of T are
connected. Then T* and T are recognizable.

Proof: Let Ty = TN M(A,I) and T; = T N M“(A,I). By Proposition 3.17 and
Corollary 3.20 T} and T are recognizable. Now the thesis follows directly from Lemma
4.2 since the family of recognizable sets is closed under finite union and concatenation. O

Now we are ready to introduce and examine two new operations on trace languages. Let
T C M>=(A,I). The finite and infinite concurrent iterations of T' are defined in the
following way :

T = (C(T))  and T = (C(T))".

As a direct consequence of Lemma 4.1 and Corollary 4.3 we obtain the following result.

Theorem 4.4 If T is a recognizable subset of M*>(A,I) then T°™* and T°% are recog-
nizable.

We shall now present three important families of trace languages: rational, c-rational and
sc-rational trace languages.

The family Rat_M(A, ) of rational subsets of M(A,I) is the smallest family F of trace

languages such that
(R1) 0 € Fand Va € A, {p(a)} € F,

(RZ) ile,TgEfthenTlLJTgEfandTl-TgEf,
(RAT) if T'€ F then T* € F.

The family Rat_M>(A,I) of rational subsets of M (A, I) is the smallest family F of
trace languages verifying (R1),(R2),(RAT) and the following condition
(RAT,) ifT € F then T¥ € F.

Recall that the concatenation is only a partial operation on M*(A,I).

The family sc_Rat_M (A, I) of sc-rational subsets of M(A,I) is the smallest family F of
trace languages verifying (R1),(R2) and the following condition
(sc.RAT) if '€ F and all traces of T" are connected then 7™ € F.

Similarly, the family sc_Rat_M* (A, I) of sc-rational subsets of M*(A, ) is the smallest
family F satisfying (R1),(R2),(sc.RAT) and
(sc.RAT,) if T' € F and all traces of T" are connected then 7% € F.

Finally, the families c_.Rat_M (A, I) and c_Rat_M*> (A, I) of c-rational trace languages are

defined as the families Rat_M (A, ) and Rat_M>(A,I) with (RAT) and (RAT ) replaced
respectively by the following conditions:
(cRAT) ifT € F then T * € F,
(c_RAT,) ifT € F then T € F.

Let us note that the following inclusions obviously hold:
sc_Rat_M(A,I) C Rat_M(A,I)

and

sc_Rat_M(A,I) C c_.Rat_M(A,I)
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Moreover, from Propositions 3.15 and 3.16 and Theorem 4.4, it follows that

c-Rat_M(A, 1) C Rec_M(A,I)

Ochmaiiski [33] has proved that for each recognizable subset of M(A,[I) there exists
a rational expression defining this set such that all finite iterations occurring in this
expression are applied only to sets that contain exclusively connected traces. Using our
notation this fact is expressed by the following inclusion

Rec M(A,I) C sc_Rat_M(A,I)

Let us note that while Ochmaiiski distinguished the family c_Rat_M (A, I) he did not
introduce explicitly the family of sc-rational sets. Summarizing all these inclusions we get
the following result.

Theorem 4.5 ([33])

sc_Rat_M(A,I)=c_Rat_M(A,I)= Rec.M(A,I)C Rat_-M(A,I)

As it turns out this theorem generalizes to subsets of M* (A, I):
Theorem 4.6

sc_Rat_M*(A,I)=c_.Rat_M*>(A,I)= Rec.M*(A,I) C Rat_M>(A,I)

Proof: Again the inclusions
sc_Rat_M*>(A,I) C Rat_M>(A,I)

and

sc_Rat_M*>(A,I) C c_Rat_M>(A,I)
are obvious. From Propositions 3.15 and 3.16 and Theorem 4.4, we get that

c_Rat_M>(A,I) C Rec_.M™(A, I
To accomplish the proof it suffices to show that
Ree_M*(A, 1) C sc_Rat_M*(A,I)
Let T € Ree_lM*(A,I) and Ty = T N M(A,I), T, = T N M“(A,I). By Theorem 4.5
Ty € Rec_.M(A,I) = sc_Rat_M(A, 1) C sc_Rat_M>(A,I) (1)

By Theorem 3.22, T} is a finite union of sets of the form UV} --- V¥, where U, Vi,..., Vj
belong to Rec_M (A, I)=sc_Rat_M (A, I) and all traces of each of the sets V; are connected.
Therefore

T; € sc_Rat_M*>(A,I) (2)
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as well. These two facts (1) and (2) show that T' € sc_.Rat_M* (A, I). O

(Classical Kleene theorem states the equality of recognizable and rational subsets of the free
monoid A*. Similar fact holds also for subsets of A“ — recognizable and w-rational subsets
of A coincide [37]. The equalities Rec_.M (A, I)= c_Rat_M(A,I) and Rec_.M™(A, )=
c_Rat_M*>(A,I) can be interpreted as counterparts of the Kleene theorem with finite and
infinite iterations replaced by c-iterations.

We end this section with a characterization of rational subsets of M*(A,I). Let T' C
M>(A,I), « € A. Then P,(T) will denote the set {t € T | alph(t) = «a}. First, we

establish two auxiliary lemmas.
Lemma 4.7 Let T € Rat_M(A,I). Then Yoo C A, P,(T) € Rat_M(A,I).

Proof: The proof is carried out by structural induction on rational expressions.
(R1)  P.(0) =0 € Rat_-M(A,I), Pioy({p(a)}) = {p(a)} € Rat_M(A,I) and if o #
{a} then P,({¢(a)}) =0 € Rat_M(A,I).

(R2) Let Ty, T, C Rat_M(A,I) and a C A. Then

Po(Ty UTy) = Po(Ty) U Po(Ty)

and

Pa(Tl : TQ) = U Pal(Tl) ’ Paz(T2)

apUas=o

the thesis follows from the induction hypothesis for T} and 75.
(RAT) Let T C M(A,I) and o« € A. We set Q,(T) = {t € T | alph(t) C a} =
UgcaPs(T'). Then

Po(T7) = (J(Qa(T))™ + Poy(T) + (Qu(T))" + Py (T) - (Qul(T))" -+ P (T) - (Qu(T))"

where the union is taken over over all sequences ay,...,a; of subsets of a such that
ag U---Uap = o and o; # o for ¢ # 7 and now the thesis follows from the induction
hypothesis for T'. a

Lemma 4.8 Let S,T C M(A,I). The following formulas hold:

§4.T = U P.(5%) - P(T) - (Po(57)”

afrcAand pxyCr

w

§Y T = U Po(S7) - PAT™) - (P5(S7) - Po(T7))

a,By,sCAand Bx(yus)CI

Proof: Observe first that the right hand side is obviously included in the left hand
side. Conversely, let t € S¥ - T, then there exist ro,r1,72,...1n S and s in 7" such that
t =r-s where r = roriry.... Let a = alph(r), 5 = alph,(r) and v = alph(s). Since the
product r - s is well defined, we have 3 x v C I. Now there exists an increasing sequence

33



t0, 11,12, ... of integers such that alph(rg---ry,—1) = « and alph(r;,_, -~ ri,—1) = 3 for all
k > 0. Finally, we obtain

b— g = (To---no_l) s (rio . --7“2'1—1) . (ril . --7“2'2_1) o € Po(S%) - P(T) - (pﬁ(g*))“’

which proves the first formula.
The proof for the second formula is similar. a

Theorem 4.9 A trace language T C M*>(A,I) is rational if and only if T is a finite
union of sets of the form R- S, where R, S € Rat_M(A,I).

Proof: Let F be the family of languages which are finite union of sets of the form
R - S5¥ where R, S € Rat_M(A,I). Clearly, the family F is contained in Rat_-M>(A,1).
We shall show that the family F satisfies the conditions (R1), (R2), (RAT) and (Rat,)
which proves the converse inclusion.

(R1) More generally, Rat_M(A,I) C F since for R € Rat_M(A, ) we have R = R-{1}* €
F.

(R2) The family F is clearly closed under finite union. The closure under concatenation
follows from Lemma 4.7 and 4.8.

(RAT) and (RAT,) Let T' € F, there exist an integer n and rational sets
Ry, 51,...,R., Sy € Rat_M(A,I) such that T = Uj<;<, R:S¢. We may assume that,
for some m € {0,...,n}, we have 1 € S; if and only if 1 < ¢ < m. As in Lemma 4.2,
we set Ty =T N M(A,I) and T; =T N M“(A,I). Then we have Ty = Ui<;<n R;S; and
T; = Ui<icn Bi(Si \ {1})“. Therefore, Ty € Rat_M(A,I) and we obtain T7,T¢,T; € F.
Using Lemma 4.2 and the closure of F under finite union and concatenation we deduce

that 7* and 7% are in F.
O

As a direct consequence of this normal form, we obtain a tight link between rational word
languages and rational trace languages. Note that this generalizes the corresponding
well-known result for finite traces.

Corollary 4.10 A language T C M™(A, 1) is rational if and only if there exists a rational
language L C A such that T'= o(L).

5 Conclusion

In this paper, we have investigated properties of the families of rational and recognizable
sets of infinite traces.

A normal form for the rational languages of infinite traces (Theorem 4.9) has been given.

Several characterizations of the family of recognizable languages of infinite traces have
also been proposed. Extending the Schitzenberger product to the diamond product, we
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have proved that the families of recognizable languages and weakly recognizable languages
coincide (Theorem 3.13). Then, we have shown that the infinite iteration 7 of a recog-
nizable language T of finite traces is recognizable if its finite iteration 7™ is recognizable
(Corollary 3.19). This fact has several interesting consequences. First, a kind of normal
form theorem (Theorem 3.22) for recognizable languages of infinite traces is derived from
this result. Second, Ochmanski’s theorem on finite traces and Biichi’s theorem on infi-
nite words are extended to infinite traces. More precisely, we prove that the families of
recognizable and c-rational languages of infinite traces are equal (Theorem 4.6).

We would like to point out some recent advances in the theory. Using in particular one
of our main results (Theorem 4.6), a characterization of recognizable languages of infinite
traces as languages definable in monadic second order logic is proposed in [14]. In [21]
finite state asynchronous automata, initially constructed to work on finite traces [8, 39],
are adapted to infinite traces and it is proved that they accept exactly all recognizable
sets of infinite traces. Note however that the automata of [21] generalize Biichi non-
deterministic automata on infinite words. The problem of how to construct for infinite
trace languages a suitable counterpart of Muller deterministic automata has been solved
recently in [13].

Finally, in [12] recognizability questions are addressed in the framework of complex traces.
Some results presented in our paper are basic in that theory.
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