Chapter 7

Asynchronous Automata

Wieslaw Zielonka,

Université Bordeaux I, LaBRI, URA CNRS 1304
351, cours de la Libération, 33405 Talence Cedex, France
zielonka@geocub.greco-prog.fr

Contents

7.1 Introduction ... ... ... ... ..., .. . ... ... . . 205
7.2 Asynchronous Transition Systems . . . ... .. ... .. 206

7.3 Non-Interleaving Semantics of Asynchronous
Transition Systems . . . . ... .. ... .. ... ... .. . 212
7.3.1 Processes . . ... ...... ... 213
7.3.2 Semantics Based on Partial Order of Action Occurrences 225
7.4 Asynchronous Cellular Transition Systems . ... ... 228
7.5 Simulations Between Asynchronous Transition Systems231
7.6 Language Recognizability by Asynchronous Automata 238
7.7 Bibliographical Remarks . .. .. .............. 2486

7.1 Introduction

The problem of inventing a suitable machine-like model for traces was implicitly
present since the advent of trace theory. Such devices should exhibit two properties

¢ they should have an adequate computational power, i.e. they should accept

exactly recognizable? sets of traces and

¢ the independency of actions should be reflected by the “true” concurrency of

their executions and not just by the interleaving.

2“Recognizable” means here recognizable in the abstract way — by means of morphisms from

the free partially commutative monoids into finite monoids
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206 CHAPTER 7. ASYNCHRONOUS AUTOMATA

The condition-event nets used in Mazurkiewicz’s seminal paper [189], which intro-
duced traces in the domain of concurrency, satisfy the second condition, but their
computational power is clearly insufficient — as it is well-known there are recog-
nizable subsets of the free monoid that cannot be recognized by unlabelled Petri
nets. The direct possibility of enhancing the power of condition-event nets passes
by endowing them with a labelling of transitions. Unfortunately some labellings
give rise to behaviours that are expressed by labelled acyclic graphs that are not
interpretable in the framework of trace theory. Thus actually in this case we should
specify a class of admissible labellings but such objects become too complex and
difficult to handle.

Asynchronous antomata introduced in this chapter overcome these difficulties,
they have the desired computational power, allow the “real” concurrency of ac-
tions and have a nice regular structure. Moreover they place trace theory in the
framework of the well-established theory of finite automata.

The chapter is organized as follows.

In Section 7.2 asynchronous transition systems are introduced.

Two natural non-interleaving semantics for these systems are proposed in Sec-
tion 7.3.

The first of these semantics has been patterned on the process semantics of
Petri nets. However we can note that while processes in Petri nets are always
represented by directed acyclic graphs, to represent faithfully the behaviour of finite
asynchronous transition systems we are obliged to admit in general some cycles (still
if an asynchronous transition system can be directly represented as a Petri net then
both process semantics are identical, in particular all processes are acyclic.)

The second semantics examined in this section is directly related to traces, ac-
tually it yields a trace representation adapted for asynchronous transition systems.

In Section 7.4 a special class of asynchronous transition systems, finite asyn-
chronous cellular transition systems, is presented. In the next Section 7.5 we show
that not only asynchronous cellular transition systems have particularly simple and
appealing internal structure but in fact they can simulate without any loss of po-
tential concurrency between actions a much larger class of asynchronous transition
systems.

In Section 7.6 asynchronous (cellular) transition systems are equipped with the
sets of initial and final states and the recognizability power of the automata obtained
in this way is examined.

7.2 Asynchronous Transition Systems
The following notation will be used throughout the chapter. By idx = {(z,z) |z €

X} we shall denote the identity relation over a set X, if the domain of this relation is
clear from the context then the subscript X will often be skipped. Let E be a binary

relation. For any element = and a set B: zE = {y | (z,y) € E} is the image of

under E, Ex = {y | (y,z) € E} is the inverse image of & under E, BE = |J ¢ pzFE,
EB = | ¢p Ex are respectively the image and the inverse image of B under E,
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finally E~' = {(x,y) | (y,z) € E} is the inverse of E. The composition of two binary
relations E and F is defined as Eo F = {(z,y) | 3z,(z, 2) € E and (z,y) € F}.
The transitive clo;sure of a relation £ C X x X is defined as E+ — Ui, E,
where E' = E and E™*! = E'o E, while E* = idx U E+ denotes the transitilv_eoand
reflexive closure of E. :
The relation E is said to be acyclic if its graph is acyclic, i.e. if idx N Et = 0.
For any two sets X and Y, F(X;Y) denotes the family of all mappings from X
into Y and P{X) stands for the family of all subsets of X.
For any word z € X" by |z| we denote the length of z, while |z, is the number
of occurrences of ¢ € % in z. The empty word is denoted by 1, Recy: stands for the
family of recognizable subsets of ¥*.

After these preliminaries we can pass to the main subject of this chapter. A
signature is a triple o = (X, R, E), where

— X is the set actions,

— R is the set of registers,

— ECY¥ x RUR x X is the connection relation.

We assume that R and ¥ are disjoint,.

Intuitively, a signature represents a static structure of a distributed system, for
each action @ € ¥, Ea = {r € R | (r,a) € E} is the set of registers that a reads
when it is executed and ¢E = {r € R | (a,r) € E} is the set of registers that a
modifies (i.e. where it writes a new value).

A finite asynchronous transition system (or a fat-system for short) is a tuple
T=(%,R,E, X,A), where

— (X, R, E) is a signature of T,

— X is a finite set of values (local states),

— A is a family of local transition relations.

The set A = {4, | a € T} consists of local transition relations, for each action
a € ¥, A contains a transition relation 6,

be SF(Fa; X) x F(aE; X)

To describe precisely how fat-systems work and how local transition relations
are used by the actions we need some additional notation.

We assume that at each moment every register contains some value from the
set X of values, thus the global state of the system is described by a mapping
§: R — X assigning to each register r € R its values s(r) € X. By S we shall
denocte the set F(R; X) of all global states of 7.

For every s € S and a C R by S|a We denote the restriction of s to a. Note that
8le € F(o; X). In general the mappings from a subset a of R into X will be called
Ppartial states.

Elements of the local transition relation 8, are called local transitions. A local
transition (s1, s2) € &, is said to be enabled at a global state s’ € S if s; = siEa. The
action a is enabled at s’ € S if some of its local transition is enabled. If transition
{81,52) € 8, is enabled at s' € S then it can be executed by a yielding a new global
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state s’ € S such that

" _ s’(T‘) ifr¢éakb
vreR, §'(r)= { s2(r) otherwise

Intuitively, the execution of an action a can be interpreted in the following way.
First a reads the values of all registers from its reading domain Fa obtaining a
partial state s’ € F(Ea; X). Next it chooses a partial state s” € F(aFE; X) such
that (s',s") € 6, and modifies the values of registers of its writing domain aE
writing to each register r € aE the value s”(r). The execution of a described above
is atomic.

Formally, the modifications of global states by execution of actions are specified
by means of the global transition relation A:

ACSxExS

(Let us note that the symbol A is slightly overloaded since it is used also to
denote the family of local transition relations of 7, however the context will always
indicate unambiguously the actual meaning of A.)

Let s',s" € S and a € &. Then (s',a,8") € A if

(1gar Slap) € ba

and
S\R\(@E) = SIR\(@E)

Sometimes it is convenient to interpret A as a mapping from S x I into P(S),
where A(s,a) = {s' € S| (s,a,8') € A} for s€ Sand a € X.

A fat-system 7 is deterministic if for each a € ¥ and each global state s € §
there is at most one global state s’ such that (s,a,s’) € A. In this case A can
be interpreted as a partial mapping from S x ¥ into S, where s = As,e) iff
(s,a,s") € A. Note that 7 is deterministic if all relations &, are (partial) functions
" Va € 5,Vs € F(Ea; X),card{s' € F(aE;X) | (s,8') € 8a} < 1, i.e. for each
action a and each global state there is at most one local transition of a enabled at
this state.

The global transition relation can be extended in the standard way to finite

sequences of actions:
ACSXXY* xS

by setting (s, 1, s) € A for each s € S and (s', ua, ") € A iff there exists s € S such
that (s',u,s) € A and (s,a,s") € A for any word u € ¥* and a € 3.

Example 7.2.1 Let R = {ry,m2}, ¥ = {a,b, c}, X = {0,1,2} and let o be as on
Figure 7.1

Here and in the sequel the elements of R are represented by circles while the
elements of ¥ by boxes.

The local transition relations of 7 are given by the following tables

v
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Figure 7.1: A signature o.
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ba | 1]l ™1 b | T || T2 b [m|ra ]
01 2 1 2 10
1] 2 12 11200

In genera.l, for every a € X, a row of a transition table of 6, corresponds to
a local transition (s,s"”) € 684, s’ is given by the first part of the row, while s”
is coded by the part after the double vertical line. For example the s:acond row
O:fr the transition table for ¢ shows that (s/,s") € é, where s’ € F({r;,}; X)
s" € F({r1}; X) are such that s'(r) = 1, s'(ry) = 2, s”(r;) = 0. In otht;r Wél‘dS’
this transition describes the fact that if r; contains 1 and 7, contains 2 then ¢ is’
enabl.ed and if this transition is executed then 0 is written to »,.
' Figure 7.2 presents the graph of the global transition relation A. (In the graph-
ical .representation of A global states are given by tuples of values from X, where
the i-th element of the tuple gives the value of the register r;. A directed edée from

s’ to 5" labelled by a € ¥ denotes the fact that (s, a, s") € A.) This fat-system is
deterministic.

b
T ¢ B
(0.2)<—(0,1 L (1,0) (2,0)
b ’ /b*\
1 r—
( 12)\3/(1’1) a (2’1)Y (2.2)

Figure 7.2: Global transition relation

The main interest in the fat-systems results from their ability to execute some
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actions in parallel. Intuitively, the execution of an action a € X, consisting of
reading the contents of registers from Fa and modifying the values of registers from
aE is atomic. This implies that the execution of another action b € ¥ cannot
averlap the execution of a if b writes to one of the registers r € aE U Ea used by
a. Dependence and potential parallelism between actions are captured by means of
binary relations over ¥ that are defined below.

With each signature o = (X, R, E) we associate four binary relations over X

— C ={(a,b) € £* | aEN Eb # 0} — direct causality relation,

— W = {(a,b) € £2 | aENbE # 0} — writing conflict relation,

— D =CuUC~*UW — conflict relation,

— I = 2\ D — independence relation.

Note that two actions a, b € % are independent, (a,b) € I, ifeENbE = aENEb =
EanbE = §. In fact these are well-known Bernstein’s conditions [10] specifying the
pairs of non-interfering actions that can be executed in any order without altering
the result of the computation, actually any pair of independent actions can be
executed even simultaneously. This point is discussed in detail in Section 7.3.

Given a fat-system 7 we can classify all actions as belonging to one of the
following four classes: external, test, reset and internal actions:

e An action a € ¥ is external if aF U Ea = 0, i.e. a neither reads nor writes
to any register. Note that in this case either &, is empty or 8, = {(0,0)},
i.e. only one local transition consisting of the pair of the empty mappings is
possible for a. In the first case a is never enabled, while in the second case
it is always enabled but its execution does not change the global state and,
since Vb € T, (a,b) € I, a can be executed simultaneously with any other
action. Thus ¢ does not interact at all with the system and therefore can be
considered as external.

e An action a is a test action if aE = @ but Ea # 0. Then é, C F(Eea; X) x {0},
i.e. the second component of each local transition in 8, is the empty mapping.

Let Test, = {s' € F(Ea;X) | (s,8) € 6.}. For any global state s € S, if
8|pa € Testy then A(s,a) = s, otherwise A(s,a) = @. Thus the action e
can be interpreted as a test of values of registers in Ea, if the corresponding
partial state belongs to Test, then a can be executed successfully (but this
execution does not change the global state of the system), otherwise a is not
enabled and its execution fails.

e Now suppose that aF # @ and Ea = . Then §, C {0} x F(aE; X), ie.
the first component of each local transition in &, is the empty mapping. Let
Reset, = {s € F(aE;X) | (0,s) € 6,}. Now for all global states s1,s2 € 5,
(s1,a,s2) € A if and only if sy,z € Reset, and saip\aE = $1|R\aE" In
other words, since a does not read anything, it is always enabled and upon
its execution a partial state is chosen from Reset, and the registers from the
set aE are modified according to this partial state. Thus intuitively, a can
be interpreted as a reset action that can always be executed and whenever
activated it resets the values of registers from aE.
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e Finally, by internal action we mean any action e € ¥ such that both aFE and
Eq are non-empty.

Example 7.2.2 Let & = {a,b,c}, R = {r1,r}, X = {0,1 i i
presented on Figure 7.3. { vrzh o J. The lgnature is

Figure 7.3: A signature o.

the that a is.a test action, ¢ is a reset action and b is an internal action. The
following tables give the transition relations of a,b and c.

by | T Ty | r
5 7 b | T2 1 2
@ 0‘ 001

R ERE

Figure 7.4 presents the global transition graph of this system.

be

T2
0

b /,b/ (1,1) b
((),o)”/r\ (0,1 .

U U T

a,c a

Figure 7.4: Global transition graph

In the rest of the paper we restrict our attention to asynchronous transition
Systems that have only internal and reset actions. (Since the executions of the
f)ther actions does not have any influence on the system state they can be ignored
if necessary it is always possible to include them in the system by the addition o%
Supplementary registers.)

Th.us from now on we assume that each signature o = (X, R, E) satisfies the
following condition

VaeXl, aE #£0
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i.e. each action writes to some register. Let us note that this condition implies that
the writing conflict relation W is reflexive, idy; C W.

The graphical representation of the signatures that is used here is the same as
the graphical representation of unmarked Petri nets. This resemblance is in fact
intended — actions and registers of fat-systems play the same role as transitions
and places in Petri nets and in some cases a direct translation of the fat-systems
into (labelled) Petri nets is possible [277]. To some extent fat-systems can be con-
sidered as special coloured Petri nets where the values of registers are viewed as
coloured tokens. However some significant differences between these models exist.
In coloured Petri nets places can contain any number of tokens, in particular they
can be empty, while in fat-systems each register contains always exactly one token.
Even more notable difference resides in the execution mode. A firing of a transition
in a Petri net results in removing some tokens from the input places and adding new
tokens to the output places. The execution semantics of fat-systems is quite differ-
ent — the input registers are only read, their contents is not modified if they are not
in the writing domain of the executed action. Implicitly this implies that different
actions sharing only their reading registers can be executed simultaneously. Also
the contents of the output registers changes in a different way, rather than adding
a new token to the existing one a fat-system replaces the old token by a new one.

7.3 Non-Interleaving Semantics of Asynchronous
Transition Systems

In order to unify the terminology it is useful to introduce the following notion.

Labelled relational structures are (isomorphism classes) of tuples
(X, Ry1,...,Rn,A), where X is a set, Ry,..., Ry are binary relations over X and A
is a labelling associating with each element = of X a label A(x).

Such systems can be viewed as vertex labelled graphs with arcs of various types:
the set X is the set of vertices, |JI_; R; is the set of arcs, R; being the set of
arcs of type R;. The relations R; are not necessarily disjoint, thus an arc (z,y),
z,y € X can belong to several different types at the same time. Two labelled
relational structures (X, Ry,...,R,, ) and (X', R},..., R}, \’) are isomorphic if
they represent the same graph up to a renaming of vertices, i.e. if there exists a
bijection f: X — X' such that

Vz € X, A(z) = X (f(2))

and
Vi,1 <i<mn, Yr1,22 € X, (z1,72) € R; <= (f(z1), fz2)) € R;

In the sequel we identify isomorphic labelled relational structures.

To describe precisely how the asynchronous transition systems work we should
present semantics that is capable to reflect the asynchronous and parallel aspects
of computations of such systems.
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Let us recall that with each signature ¢ = (3, R, E) we have associated the
following conflict relation

D:{(a,b)ezz|aEﬂbE#90raEﬂEb7é@orEaﬂbE;£@}

and the independence relation I = %2\ D. The conflict relation D is obviously
symmetric and, since we have assumed that Va € I, aE # 0, it is also reflexive.
Let ~ be the least congruence over the free monoid £* such that ab~ba for all
(a,b) € 1. Let M(X,I) be the corresponding free partially commutative monoid,
i.e. the quotient of the free monoid £* by ~;. As always the elements of M(%, 1)
are called traces, [u]; will denote the trace generated by a word u € £*.
Intuitively, the relation ~; identifies the strings in ©* that generate the same
computation. In fact a suitable representation of traces shows explicitly which
actions can be executed in parallel — this is the main subject of the present section.
Immediately we can note the following remark:

Remark 7.3.1 For all z,y € £* and for all global states s € S of a fat-system over
the signature o, if z~ry then A(s,z) = A(s, y).

Proof: Direct verification shows that for each pair of independent actions, (a,b) €
I, we have A(s,ab) = A(s, ba).

Now note that z~y iff there exists a sequence 2, zy,. .., 2 of words of ©* such
that £ = zg, y = 2 and 2 = w;a;b;vi, 211 = w;b;a;v; for some w;,v; € T* and
(ai,b;) € I, i = 0,...,k — 1, therefore A(s,z;) = A(s, z;4,) results immediately
from the preceding remark. O

Remark 7.3.1 shows that the global transition relation can be extended to traces:
ACSxM(Z,I)x S

by setting for 5,5’ € 5, t € M(X,1), (s,t,5') € A if (s,z,5') € A for some (or
equivalently for all) « € ¥* such that [z]; = £. As in the case of words we shall
sometimes view A as a mapping A : § x M(X,I) — P(S) or as a partial mapping
from S x M(X, I) into S if the fat-system is deterministic.

7.3.1 Processes

I:et 7= (X, R, E, X, A) be a fat-system. In this section we shall note local transi-
tions (s',5"") € 8,4, a € T, of T as triples (s',a,s”). We begin with the definition of
sequential processes.

A sequential process in 7 is a sequence

P= (Slw az, 53), (32’0'2’ 3,2)7 CER) (sna Qn, 3:1)
of transitions such that

Seql: for all 4,5 (1 < ¢ < j < n) and for all r € R, if r € Ea; N Ea; and Vk,
(1 <k <j),r & arE then s;(r) = 5;(r).
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Seq2: for all 4,7 (1 < i < j < n)and forallr € R, ifr € a;E N Ea; and
Vk,i < k < j, € aE then si(r) = s;(r),

Intuitively, Seql states that if two actions a; and a; read the value of a register
r and this register was not modified by any action following a; and preceding a;
then they should read the same value. Condition Seq 2 specifies which value a;
reads from a register r, this is the value written by the last action preceding a; and
writing into r. Note that Seql is redundant for actions preceded by some writing
action, since in this case Seq2 implies Seql. However, Seql is necessary if a; and
a; are not preceded by any action writing into r in order to specify that in this case
both actions read the same “initial” value of r.

Example 7.3.2 Let us consider the fat-system of Example 7.2.1. Then p =
U Ug U3ty UsUgly 1S a sequential process in 7, where

ur = ({(r1,0)}, @, {(r1, 1)}), ua = ({(r2, )}, b, {(r2,2)}),

uz = ({(r1,1), (r2,2)}, ¢, {(r1,0)}), ua = ({(r2,2)}, b, {(r2, 1)}),

us = ({(r1,0)}, a, {(r1, D}, ue = ({(r1, 1)}, @, {(r1,2)}),

uzr = ({(r1,2), (r2, 1)}, ¢,{(r1,0)})-

Intuitively, to obtain a concurrent process from a sequential process p we trans-
form each local transition (s;,a;, st) of p into the labelled graph presented on Fig-
ure 7.5, where Ea = {r;,,...,r;, }, aE = {r’ i b YL LTS k) s5(r,) = 2y,

Vi(1<1<n)si(r])=2.

~ Ut

] A ]

(1"1'1,:17.;1) (1‘;—1, m_,yl)

(Tin> Ti ) (T;-n ) x;'n

Figure 7.5: Causal dependence relation for a single local transition

The vertices labelled by (r;,,z;,) represent the events consisting of reading the
value ;, from register ri,, the vertices labelled by (' Ti,,T5 ) represent the events of
writing :c; into r , finally the vertex labelled by a; represents the execution of a;-
Next we simply 1dent1fy the reading events with the corresponding writing events
produced by preceding local transitions. In this way we obtain the causal precedence
relation Caus over the set of events. As it turns out there are temporal precedence
relations between the events that do not result from the causality relation, e.g.
when we have two actions writing into the same register that mutually do not
communicate directly. This temporal precedence is captured by the relation Pred
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over the events. The description of Pred being a bit tricky, is postponed for a
moment.

Now we pass to the formal definition.

A concurrent process is a labelled relational structure cp = (Events, Caus, Pred,
A), where

— FEwvents is a set of events,

— Caus and Pred are two relations over Events, they are called respectively
direct causality and direct precedence relations,

— A : Events — £ U (R x X} is a labelling of events.

Intuitively, if an event e € Fvents is labelled by a € %, i.e.,, A(e) = q, then e
represents an execution of the action a in cp, otherwise, if A(e) = (r,z) € R x X
then e represents a state of r, where r contains the value .

The relation Caus describes the causal dependence between events, if
z1Caus*zy, z1 # za, then z; is, possibly indirect, cause of z;. The relation Pred
describes the necessary temporal relations between events, if z) Pred*zy, z; # 2z,
then the event z; precedes z3. We always have the inclusion Caus C Pred, i.e.
causality implies temporal precedence.

Instead of giving a list of condition characterizing concurrent processes we de-
scribe how a sequential process can be transformed into a concurrent one. This
transformation will be denoted by ¥.

Let

P =(51,01,51)s s (8ns tn, 87,) (7.1)

be a sequential process. The corresponding concurrent process is the labelled
relational structure

cp = ¥(p) = (Events, Caus, Pred, ))

The set Events is the union of two disjoint sets Eventsy, and Eventsg. The set
Eventsy consists of exactly n elements:

Eventsy, = {e1,...,en}

where n = [p| is the number of transition occurrences in p. An event e; € Eventsy,
represents the action occurrence a;, hence

)\(ei)zai, 1§i§n
The set Fventsp is the union

FEventsg = U FEvents,
reR

where
Events, = A"'({r} x X), r€R

is the set of events representing consecutive states of the register r. This set is
obtained in the following way.
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Let II, : ¥* — X* be the erasing morphism preserving only actions writing

into r: (@)
_J a if(a,r)eE
I (a) = { 1 otherwise

Let m, = |II.(ay...a,)|, i.e. there are exactly m, action occurrences in p writing
into 7. Then

{weo, Wr1y -y Wrm, } 3k (1 <k <n)(rax) € E and
Events, = II.(a...ap-1) =1
{wriy .o Wem, } otherwise

Intuitively, w4, 1 < k < m,, represents the state of r after k-th writing into ». If
there is k, 1 < k < n, such that the k-th transition of p reads r but no preceding
transition writes into r then Events, contains also the event w,q corresponding to
the “initial” state of r.

For each k, 1 < k < m,., we set

ix =min{j | 1 <j <nand |[I.(a;...q;)] =k} (7.2)

From the definition of II, it follows that (a;,,r) € E and, in fact, a;, is the k-th
action occurrence writing into 7 in p. The label of w, is defined by

A(wr) = (r, 55, (7))

i.e. w, is labelled by a pair (r,z), where z € X is the k-th value written into r. If
w,g € Fvents, then we set additionally

Awro) = (r, sk(r))

for any k such that (r,ax) € E and II,(a;...ak—1) = 1. (Note that if there are
several actions reading the value of 7 before this value is overwritten by other actions
of p then Seql assures that all of them read the same value, i.e. this definition is
consistent.)

The relation Caus is the union of two relations

Caus = Readp U Writer

where
Readp = U Read, and Writep = U Write,
r€R reR

The relation Write, codes the direct causality relation between action occurrences
writing into r and events representing the state of r immediately after this writing:

Write, = {{ei,, wrk) € Eventsy, X Events, |1 <k <m}

where i), is given by Eq. 7.2.
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The relation Read,, r € R, consists of pairs of events (w,;,e;) such that a; is
the action occurrence reading the state of r represented by Wyt

Read, = {(w;,e1) € Events, x Eventsy. | (r,a;) € E and j = [I.(a; ...a;-1)|}

Note that in particular if II,(a; ...a;_1) = 1 and r € Eq; then (w,, e;) € Read,,
i.e. a; reads the initial value of r.

As an example we show on Figure 7.6 the concurrent process ¥(p) =
(Events, Caus, Pred, \) obtained for the sequential process p from Example 7.3.2.

From now on we assume that the following rule is adopted in the graphical
representation of concurrent processes: continuous arcs represent the elements of
the direct caunsality relation Caus, while dashed arcs represent the elements of
Pred\ Caus, ie. the pairs of events that should be added to Caus to obtain the
direct precedence relation Pred; since always Caus C Pred this representation is
unambiguous. (The relation Pred is defined below.)

a
(r1,0) ”m‘l)\\: (r,0) ¢ (r1,1)”‘1 (r1,2) 31,0)
[ I Y Sk
,1
(r2,1) b (r2,2) i (re, 1) ¢

Figure 7.6: The concurrent process ¥(p).

The direct precedence relation Pred is the union

Pred = Caus U Beforeg U Whileg

where
Beforep = | | Before, and Whileg = | White,
TER TER
To introduce the relation Beforeg let us consider the following example:

Example 7.3.3 Let




218 CHAPTER 7. ASYNCHRONOUS AUTOMATA

be a signature of a fat-system with the following local transitions relations

bo | T1 || T2 by | T3 || T2 be | r2 |l 18
11 2 2 1] 2
2 0

Let v, = {(r,Dha{(r1)}), w = ({(rs2)}6,{(r2,2)}), w1 =
({(r2, D}, {(r3,2)}), w2 = ({(r2,2)},¢,{(r3,0)}) and let p1 = uaup,p2 = upu,
be two sequential processes in this system. Both processes yield the same causality
relation (Events, Caus, A) that is presented on Figure 7.7.

a

(Tllvl)E || E STI2)1)
(r3,2) [| (r2;2)

b

Figure 7.7: Causality relation for the sequential processes p; and pa.

Note that the events generated by the transition u, are causally unrelated to
the events generated by the transition u,, actually neither the value written by a
is used by b nor the result of execution of b is used by a. Although, the transitions
uq and wup are completely causally unrelated, their order is important for the final
state of the system — in p; the final value of r9 is 2, in pg it is 1. The difference
between p; and p; is even more evident if we remark that u,upus and uyugzu, are
valid sequential processes while u,upt; and upugus are not valid. The causality
relations for u,upus and upu,uy are presented on Figure 7.8.

From this example we see that the information provided by the relation Caus
is somehow incomplete. For these reason we add information about the temporal
precedence of events which is captured by the relation Pred. In fact in the processes
pi and py in Example 7.3.3 actions a and b cannot be executed in parallel since u,
and up modify 7y, in p; we cannot start the execution of b before the modification
of 75 by a is completed, which yields the situation presented on Figure 7.9.

The temporal precedence just described is captured by the relations Be forey,
r € R. Intuitively, Before, consists of all pairs (w,,e) € Events, x Eventsy such
that the action occurrence e operates on r (i.e., either reads r or writes into r) and
w, is the last writing event for r preceding e. Thus (w;,e) € Before, represents
the fact that writing into r should be completed before the next action operating
on r can be executed

Before, = {(wrj,er) € Events, x Eventsy |r € qyEU Ea; and
Mr(ar... ai-1)| = 5}
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(Tl, 1)
(7'2, 1) (T‘sz) £

(1"3, 2) b

Figure 7.8: Causality relations for u,upus and upugus.

a
(7'1, 1)
H &(T% 1) (r2, 2)
o
(r3, 2) b

Figure 7.9: Caus and Beforeg relations for p;
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Note that always Read, C Before,. To complete the definition we set Beforep =
U,cr Before,.

The following remark shows that the relation Caus U Beforeg enables to order
totally all occurrences of an action ¢ € ¥ and all events corresponding to the states
of a register r € R in any concurrent process.

Remark 7.3.4 Suppose that Events, Caus, A, Beforeg are defined as above rela-
tively to a sequential process p. Then for all @ € £ and all 7 € R, the sets A™(a)
and Events, = A7!({r} x X) are totally ordered by (Caus U Beforep)*.

Proof: Let e;,e; € A™'(a) be two consecutive occurrences of @ in a sequential
process p and let r € o/ be a register in the writing domain of a. Then there exists
an event wyx € Fvents, such that (e;,w,,) € Write, and (wrk,e;) € Before,.
Thus (e;,e;) € (Writer U Beforeg)®. Similarly we show the second assertion of
the remark.

a

As it turns out the relation Caus U Beforep does not yet reflect all temporal
dependencies between elements of Events.

Example 7.3.5 Let us consider a fat-system with the signature
1 a T9 b T3

and the following transition relations

(Sa 1 To 6[7 T T3
0 1 0 0
1 0 1 1

Let uy = ({(r2,0)},b,{(r3,0)}) and uy = ({(r1,1)},a, {(r2,0)}) and let us consider
the sequential processes p; = ujus and ps = uqu;. Figure 7.10 represents the rela-
tions Caus and Beforepg induced by p;, while Figure 7.11 gives the same relations
for po.

Note that Figure 7.11 indicates clearly that a is executed before b, while Fig-
ure 7.10 may suggest that a and b can be executed in parallel. However, since a
modifies o it cannot be executed until the action b operating also on 75 is completed.

To complete the definition of the direct precedence relation Pred we should
closely analyse the situation. First let us note that the events of Eventsy: and of
Eventsg are of quite different nature. Each element e of Eventsy, represents an
action occurrence, i.e. an event that is instantaneous (or at least that can be consid-
ered as such by the assumption of atomicity of the action execution). On the other
hand, the elements of Eventspy represent states of registers, i.e. by their very nature
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(7'11 1) a

Figure 7.10. Relations Caus and Beforeg for p; (dashed arrow represents an
element of Beforeg \ Caus).

b

(r1,1) “H (r2,0) H (r3,0)

Figure 7.11. Caus and Beforeg relations for p, (here Beforep C Caus, therefore
Beforep is not visible on the picture).
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they are not instantaneous but rather span over some period of time. This point of
view can also be justified by the following consideration. As it was mentioned pre-
viously, intuitively, elements of Eventsp are obtained by an identification of events
consisting in writing into registers with subsequent matching reading events. While
both writing and reading regarded separately can be considered as instantaneous
(atomic), we cannot pretend by any means that the resulting composed events are
instantaneous, they rather last during some time.

Let us consider specifically a local transition (s, s’) € &, of a € ¥ and a sequential
process p' = (s, a,s’) consisting of just this one transition. The causality relation of
the corresponding concurrent process ¥(p') was presented on Figure 7.5. While this
graph represents accurately the causality relation between events, it may not reflect
all possible temporal dependencies. Suppose that there is a register r € (Ea)\ (a£).
Then Events, = {wyo}, Eventsy, = {e1}, where A(wyo) = (r,5(r)) and Ae;) = a.
Moreover, (w.g,e1) € Caus which implies that (w,o,€1) € Pred, i.e. wy¢ precedes
e1 in the temporal order. However in some sense w,g also coexists with e; and
immediately follows e; in the temporal order. In fact, during the execution of a
no other action can write into r, therefore during this execution and immediately
after it the value of r remains unchanged and we can assume that also (e, wrg) €
Pred. Thus the parallel process ¥((s, a, s")) should be represented by the labelled
relational structure given on Figure 7.12.

(rj,8'(r5))
r; €aE\ Ea

(Tks 5(r))
rr € Ea\aF

Figure 7.12: Concurrent process generated by one transition (s, a,s’).
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In general for a sequential process p of the form (7.1) the precedence relation
discussed above is captured by the relations While,:

While, = U, UU", where
U, = {(w,j,ex) € Events, x Eventsy, | r € (Eag)\ (axE) and
j = ]Hr(al .. .ak_l)f}
Now we set
Whilep = || While,,
TrER

and we can complete the definition of concurrent processes by defining
Pred = Caus U Beforeg U Whileg

Note that U, C Write, and if U, # 0 for some r € R then the relation Pred is not
acyclic.

We shall illustrate the complete definition of processes with a few examples.
First, to terminate Example 7.3.5 we give on Figure 7.13 the representation of the
concurrent processes ¥U(p;) and ¥(py).

Figure 7.13: Concurrent processes ¥(p;) and ¥(p2).

Example 7.3.6 Let T be a fat-system with the signature o presented on Fig-
ure 7.14.

The transition relations of 7 are presented below:

6(1 1 T3 T 61, T3 2 6c T T r3
0|0 1 0 1 1 1 1
1|1 0 1 0 0|0 0
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mj

Figure 7.14: A signature o.

(T'b 1)

Figure 7.15: A concurrent process.

7.3. NON-INTERLEAVING SEMANTICS 295

Figure 7.15 represents a concurrent process in 7.

At the end let us note that there is also an alternative possibility of defining the
concurrent processes as equivalence classes of sequential processes.

Let T be the set of local transitions of a fat-system 7 and let I be the indepen-
dence relation over ¥ induced by the signature of 7. This relation extends naturally
to T'r: two transitions v, = (s1,a,s) and up = (s3,b, s5) are said to be indepen-
dent, (u1,ug) € I, if the underlying actions are independent, (a,b) € I. Analogously
we can define the relation ~; over the set Tr* of sequences of transitions as the
smallest congruence such that V(uy,ug) € I, wyus~jyusuy. Let II: Tr* —s T be
the morphism mapping each transition (s,a, s’) to the underlying action a. Then
for all sequences py,p2 € T'r* of transitions, p; ~y ps iff II(p1) ~; I(p3). As it turns
out for each sequential process p in T we can identify the corresponding concurrent
process ¥(p) with the equivalence class of p under ~;:

Proposition 7.3.7 (i) Let p be a sequential process in T and let p' € Tr* be any
sequence of transitions such that p ~; p'. Then p’ is a sequential process.
(i) Let p,p’ be two sequential processes in 7. Then p ~y p' if and only if ¥(p) =

¥(p)-
Proof: Straightforward but tedious induction on the length of p. 0O

Proposition 7.3.7 implies that we can identify concurrent processes with the
equivalence classes [p]; of ~ for p ranging over sequential processes. This definition
would have had the advantage of being technically simpler than the definition of
the labelled relational structures ¥(p), which is rather complicate. Nevertheless,
we have preferred to introduce the concurrent processes by means of ¥(p) since
this representation reflects better the intuitive ideas lying behind this concept — it
provides explicitly the causality and temporal precedence relations between events
giving direct insight into the behaviour of the fat-systems.

7.3.2 Semantics Based on Partial Order of Action Occur-
rences

In this subsection we introduce non-interleaving semantics of the fat-systems that
takes into account only the action occurrences. As we shall see below cp-graphs
representing the behaviour of the fat-systems in this semantics are directly related
to traces, actually they constitute a representation of traces suitable for the fat-
Systems.

Let o = (%, R, E) be a fixed signature and let = be a word of £*, = ayas ... an.
A causal and precedence graph (cp-graph for short) for z is the labelled relational
structure ¥, (z) = (Evg, Cag, Pre, Ay), where

— Ev, ={ey,...,en} is the set of events, card(Fv,) = |z|,

— Az : Bv, — ¥ is a labelling such that Vi, (1 <7< n), X&) = as,

— Ca; and Pr, are acyclic relations over Ev, called respectively direct causality
relation and direct precedence relation.
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The direct causality relation is defined in the following way:

Ca, = {(ei,€j) € Evy X Evy| 1<i<j<nand
HreaiEﬂEaj, V! (i<l<j)r¢a,;E}

The direct precedence relation is defined in the following way:
(eiyej) € Pryif 1 <4 < j < n and at least one of the following conditions holds:

e Irea;FNEa;, Vi(i<l<j)rgaqE
e rea;Ena;E,VI(i<l<j)rgaqE
e JrcBa,Na;E,Vi(i<l<j)réaF

The elements of Ev, correspond to the occurrences of actions in the word z, e;
being the occurrence of a;. A pair of events (e;, e;) is in Ca, if for some register r
the action occurrence a; = A;(e;) writes into r a value that is subsequently read by
the action occurrence a; = Az{e;), i.e. no other action between a; and a; overwrites
the value written into r by a; (intuitively, there is a direct communication from a;
to a; by means of the register r).

The direct precedence relations Pr; consists of pairs of events (e;, e;) that are
in conflict for some register r. Three cases are distinguishable:

e the action occurrence a; writes into r a value that is subsequently read by the
action occurrence a;,

e the action occurrences a; and a; write to the same register and a; overwrites
the value written by a; (there is no action occurrence between a; and a;
writing into r),

e the action occurrence a; reads the value of r and a; is the first subsequent
action occurrence modifying r.

Note that the first of these conditions corresponds to the definition of Ca,, i.e.
Ca, C Prg.

Intuitively, Ca, illustrates how the information passes from one action occur-
rence to another during the execution of z by any fat-system with the signature o
while Prec, represents the the pairs of action occurrences that are in conflict over
some register and for this reason their order is significant for the final outcome of
the execution and cannot be altered. Taking the reflexive and transitive closures of
Ca; and Pr, we obtain partial orders over the set Ev;: (e;,e;) € Cal if e; is (pos-
sibly indirect) cause of e; and (e;, e;) € Pr} if e; necessarily precedes e;. If neither
(ei,e;) € Pry nor (e;,€;) € Pry then the events e; and e; can occur simultaneously
or in any order.

cp-graphs are closely related to concurrent processes. Let T be a fat-system over
a signature o. Let p = u;...u, be a sequential process in 7, where u; = (s;, a;, s})
and let ¥(p) = (Events,Caus, Pred, \) be the corresponding concurrent process.
It is easy to see that W(p) determines (up to isomorphism) the cp-graph ¥,(y) of
the sequence y = a; . ..a, of actions of p.
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Example 7.3.8 Let o be the signature of Example 7.2.1 and let & = abcbabac. The
cp-graph ¥, (z) is presented on Figure 7.16. As in the case of parallel processes,
continuous arcs show elements of Ca, while dashed arcs indicate the elements of
Pr, that are not in Ca,.

Figure 7.16: cp-graph ¥, (abcbaac)

As it turns out the cp-graphs constitute in fact a representation of traces:

Proposition 7.3.9 Let o be a signature, x,y € T*, ¥, () = (Bvg, Cag, Pry, Ag),
U, (y) = (Evy, Cay, Pry, A,) and finally let I be the independence relation induced
by o. Then the following facts are equivalent

¢ r~ry,
o ¥ (z) =V,(y) (i.e. the cp-graphs of x and y are isomorphic),
o (Evg, Pry, Ay) and (Evy, Pry, \y) are isomorphic labelled graphs,

Proof: Straightforward induction on the length of words. 0O

One may wonder why we use the cp-graph ¥, (z) to characterize the trace [z];,
as Proposition 7.3.9 shows that the trace is characterized unambiguously by the
triple (Ev,, Pry, A;) and therefore the relation Ca, seems to be useless. However,
the relation Ca, that is essential for the characterization of the runs of the asyn-
chronous automata over traces and therefore determines the recognizability power
of asynchronous automata (cf. Section 7.6). On the other hand the relation Pr,
is also necessary since Ca, cannot in general characterize traces as the following
example shows.

Example 7.3.10 Let o be the following signature:

a b

|:| T1 ﬂ T2
Then the traces [y]; and [2]7, where y = aba, z = aab, are different but (Evy, Cay, Ay)
and (Ev,,Ca,, \,) are isomorphic labelled relational structures.
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7.4 Asynchronous Cellular Transition Systems

In this section we introduce a special subclass of fat-systems — asynchronous cel-
lular transition systems. This class is characterized by a particularly simple form
of signatures. The simplicity of asynchronous cellular transition systems often fa-
cilitates formal reasoning and enables better insight into constructions carried out
in the next sections. The importance of this class is also emphasizes by the fact
that, as we shall see in Section 7.5, a large class of fat-systems is equivalent with
asynchronous cellular transition systems, which permits to focus our attention on
the latter class in the sequel.

Definition 7.4.1 A signature 0 = (X, R, E) is simple if Va € X, card(aE) = 1 and
the mapping associating with each action a € ¥ the unique register of aF is a
biyjection between ¥ and R.

Formally, finite asynchronous cellular transition systems (or fact-systems in
short) are asynchronous transition systems with simple signatures.

Up to now we have assumed that the sets £ and R are disjoint, however in
the case of fact-systems it is convenient to identify every action @ with the unique
register r, that a can modify, aF = {r,}.

Let 7 = (X,R,E, X,A) be a finite asynchronous cellular transition system.
Let € = {(e,b) € ¥ | aEN Eb # 0} be the direct causality relation induced
by o. Let us note that EN (R x ) = {(ry,b) € Rx X | (a,b) € C}, while
ENn(Xx R)={(a,ry) | a € £}. Thus we see that if we identify every register r,
with ¢ then E N (X x R) becomes the identity relation while E N (R x T) collapses
to C.

Let s € F(o; X), a C R, be a partial state and let o/ = Ea = {a € X |, € a}.
Then s will be identified with the mapping s’ € F(o; X ) such that s'(a) = s(r,), in
particular, for each a € X, F(Fa; X) is replaced by F(Ca; X). Therefore, instead
of speaking of the state of register r, we can speak about the state of the cell
a € ¥. (In the case of fact-systems we use double terminology when speaking about
elements of ¥— we call them cells if we have in mind the registers associated with
a € ¥, or actions if we consider them rather as actions in the system).

Let us consider the set F(aE;X) = F({r,}; X). Now this set is replaced by
F({a}; X). However, the set of mappings from a one element domain is naturally
isomorphic with the co-domain X, under this isomorphism each s € F({a}; X) is
identified with the value z = s(a). Therefore we replace the local transition relations
6, CF(Fa; X) x F(aFE; X), a € X by the relations

5, CF(Ca; X)x X, a€¥ (7.3)

In conclusion, an asynchronous cellular transition system can be viewed as a
quadruple
r=(%,C, X,A)

where
— X is the set of cells (actions),
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— C i1s a binary relation over ¥,

— X is the set of values (local states),

— A = {6, | a € £} is the set of transition relations that have the form defined
by (7.3).

As previously the global states of 7 are mappings from ¥ into X and S =
F(%; X) will stand for the set of global states.

The global transition relation

ACSXxYEXS

is defined in the following way:
forall ',s" € Sand a € &, (¢,a,s") € A if

(s;Ca, s"(a)) € 6, and (7.4)
Vb€ X\ {a}, s”(b) = s'(b) (7.5)

To maintain the analogy with fat-systems the pair ¢ = (E, C) will be called the
signature of the fact-system 7.

We can imagine an asynchronous cellular transition system in the following
way. Let § = (X,C) be the (directed) graph of the relation C. A global state
s € F(X; X)) associates with each vertex a € ¥ of G its state s(a) € X. How an
action a is executed in this automaton? Intuitively, a reads the states of all vertices
b such that there is an arc from b to a in G ((b,e) € C), which yields a mapping
s € F(Ca; X') — the partial state of the system induced by the neighbourhood of a.
Next a chooses a value x € X such that (s,z) € §, and takes this value as its new
state. (If for all z € X, (s,z) & 6, then a is not enabled and cannot be executed.)
Thus the execution of a does not change the states of the other cells (cf. 7.5), and
the new state of @ depends only on the states of its neighbours from Ca (cf. 7.4).

Let us note that in fact-systems the writing conflict relation W is the identity
thus the conflict relation has the form

D=CuCuidy,

i.e. two different actions cannot be executed simultaneously iff their cells are adja-
cent in the graph G.

From now on we shall always note fact-systems as quadruples 7 = (%, C, X, A)
defined above. Thus formally fact-systems have different form than fat-systems,
bevertheless we continue to view them as a special kind of fat-systems since we
can always recover the underlying fat-system by reintroducing a register r, for each
action ¢ € . ~

Example 7.4.2 Let C be the binary relation over ¥ = {a, b, c,d} presented below
and let X = {0,1}.
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We shall consider an fact-system with the following local transition relations

8, |d |l a by la|b] b b.|b|d] e b cldl] d
0 1 1101 0|01 1 (01
10 o110 1140 0|10

The graph of the global transition relation for this system is presented on Fig-
ure 7.17.

Figure 7.17. Global transition relation. Each global state s is represented by the
vector (s(a), s(b), s(c), s(d)) of four values of cells a, b, ¢, d.
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At the end let us note that cp-graph semantics for fact-systems has particularly
simple form. Let o = (2, C) be a signature of a fact-system and let Yy=a...dn,.
Then the cp-graph ¥, (y) for y is the labelled relational structure

U, (y) = (Evy, Cay, Pry, \y)

where

— Evy = {e1,...,en}, card(Ev,) = n,

— Ayle) =a; for 1 <4 < m,

— Cay = {(ei,ej) € Evy x Evy |1 < j and (a;,a;) € C and Vk (i < k < j) a; #
ak # a;}

— Pry ={(e,e5) € Evy x Evy | i < j and (a;,a;) € D and Vk (i < k < j) a; #
ax # ¢;}, where D = C U C~! U idy. is the conflict relation induced by o,

As in the general case of fat-systems, Ca, C Pry and both these relations are
acyclic.

7.5 Simulations Between Asynchronous Transi-
tion Systems

In this section we examine the question of how to simulate one fat-system by an-
other. First we fix the terminology.

A subset U of the set S of global states of a fat-system 7 is closed under transi-
tions if Vs € U,Va € X, A(s,a) CU.

Let 7, ¢ = 1,2, be fat-systems over the same alphabet ¥ and let S;, A; be
respectively the sets of global states and the global transition relations of 7;.

Definition 7.5.1 The fat-system 75 covers 1 if there exists a subset U of Sy closed
under transitions and e surjective mapping (called covering of 73) ¢ : U — S such
that Vs € U,Va € &, ¢ maps bijectively the set A(s,a) onto A(c(s),a).

Intuitively the covering relation describes the simulation of 75 by 7.

Proposition 7.5.2 Let 1, i = 1,2, be two fat-systems and let c : U — S, be a
covering of Ty by 7o, U C S3. Then

(i) for all 8 € U, for allz € ¥, if 8" € Ay(s',z) then s € U and c¢(s") €
Au(e(s"), z)

(i) for all sy, s € Sy, for allz € T*, if s{ € Ay(s],x) thenVsh € c71(s}), 35y €
c7i(sY), 55 € Ag(sh, @)

Proof: Straightforward. o

The covering relation is transitive, if 7, is covered by 72 and 7 is covered by 73
then 73 covers 71. It is also reflexive, T covers itself by the identity mapping. Not
all covering mappings are of interest, for example each fat-system 7, is covered by a
sequential fat-system 7, with the signature (X, {r}, £ x {r} U {r} x &), 7 stores in

- T the global state of 7. This trivial covering replacing a distributed system by its
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sequential simulation is not very useful. The coverings that are of interest should
not diminish the degree of parallelism of the distributed system — we shall call
them faithful.

The rest of this section is devoted to simulations between fat-systems and fact-
systems.

One of the main structural properties of fact-systems is the absence of writing
conflicts between distinct actions. As it turns out this property is essential since a
fat-system 7, can be simulated faithfully by an fact-system 75 if in 7 all writing
conflicts between different actions are in some sense redundant.

Let ¢ = (I, R, E) be a fixed signature. Let us recall that two distinct actions
a,b € ¥ are in writing conflict if aE N bE # . We say that this writing conflict
is redundant if (a,b) € C N C~!, where C = (E o E)N X? is the direct causality
relation induced by o.

In the sequel we shall study signatures ¢ where all writing conflicts between
distinct actions are redundant, i.e. we assume that the condition

Whids.-CcCnC™* 7.6
PN

holds, where W and C are respectively the writing conflict and the direct causality
relation induced by o. A signature satisfying (7.6) will be called w-redundant.

Example 7.5.3 Let us consider the signature presented on Figure 7.18.

a
a
N b
1 T3
\_)f: 7‘72 ¢ c C
b g

Figure 7.18. A signature with a non-redundant writing conflict relation and its
direct causality relation.

The actions ¢ and b are in writing conflict since they write into the same register
ro. The action a can send informations directly to b by means of the register r1,
(a,b) € C, however (b,a) & C, i.e. this writing conflict is not redundant.

Proposition 7.5.4 Let 0 = (3, R, E) be a w-redundant signature and let 7 =
(X,R,E, X, A) be an asynchronous transition system over . Let C = (E o E) ny?
be the direct causality relation induced by o. Then there exists an asynchronous
cellular transition system 7" = (X,C, X', A’) covering 7.
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Proof: In our simulation each local state of a cell @ € X of the constructed fact-
system 7' will consist of two components f and st.

The first component f is a mapping from the set a E of registers that are modified
by a in 7 into the set X of local states of 7. Intuitively, f(r), for r € aE, gives the
last value written into 7 by a. If a was not yet performed then f(r) contains any
initial value of 7. However to simulate the behaviour of 7 the information provided
by f is insufficient.

Suppose for example that for some r € R, Er = {ay),...,a;,_,} and b € rE (cf.
Figure 7.19).

Figure 7.19. (A} In 7, Er = {a;,,...,ai,_,} and b € rE. If ¢ is w-redundant then
Va.im,a,;, S E’I‘, m 7é | — az-mEﬂEai, 75 0. (B) In T','{aiu,. ..,aik_*l} X {b} - C.
If o is w-redundant then Va; ,,a; € Er, (m #1) (ai,,,a;) € C.

Thus (a;,,,b) € C for all a;,, € Er and, since the writing conflicts are redundant
in 7, we have (ai,.,a;) € Cfor all a;_,a; € Er, a;,, # a;, ie. Eris a clique of C.
Now suppose that b is executed in 7. Then b reads the contents of r and this value,
together with the values of the other registers read by b, is used to determine the
transition performed by b.

Let us consider the execution of bin 7': b reads the states of the cells @iy @iy,

_ obtaining mappings fi,,. .. fi,_, respectively and f; (r), 0 < I < k, give the last

Vvalue written into r by a;,. However to simulate 7, b should know the actual value
of 7 in 7, i.e. it should be able to determine the action of Er that was performed

as the last.
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To this end the second component of each state of 7/ is used — it is called
time-stamp. Intuitively, looking solely at the time-stamps of the cells a;,, ..., a,
the agent b will be able to determine which of them was performed as the last.

For each register r € R, T'S, = {0,...,k — 1}, where k = card(Er), will stand
for the set of time-stamps associated with r. For each action @ € ¥ we need a
time-stamp for every register 7 € aFE, thus the time-stamps for a are elements of
the direct product 7, = [[,c,gT'Sr. Now we can specify formally the set X/ of
local states of a € ¥ in 7'

X! =FE;X)x T,

Thus X' = U 5 X}, is the set of all local states of 7'.

A partial state u € F(a; X'), a C X, is said to be valid if Va € a, u(a) € X',
To explain how time-stamps are used in 7/ we fix a linear order < over the set & of
actions.

If v € F(a; X') is a valid partial state of 7' then for each register » € R such
that Er C a we can determine the last action that wrote into r by means of the
following algorithm.

Let

Er={a;, <...<a;_,} (7.7)

i.e. we order the elements of Er according to <. To determine the value of r we
use the local states of the cells of Er.

Let
u(“io) = (fig)t8i)s - - - ’u(aikfl) = (fik—l7tsik—l)
and
k—1
p= Z ts;, (r) mod k
=0

Then the action @;_, i.e. the (p + 1)st action on the ordered list (7.7) is considered
as the last writing into r. This action will be denoted by last,(r). Accordingly,
fi,(r) € X will be taken as the state of r determined by u, this value will be denoted
by value,(r).

Let us note that formally the algorithm given above defines for each valid state
u € F(a; X’) of 7 two mappings

last, : R, — %
and
value, : Ry, — X

where R, = {r € R | Er C a} and such that Vr € R, last,(r) € Er.

Moreover to compute last,(r) and value, (r) we use in fact only the local states
u(ai,), ..., u(ei,_,), i.e. the partial state u|p,.

Now we can define the covering mapping ¢, its domain is the set

Upatia = {v € F(Z; X') |Va € 3, u(a) € X1}
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of valid global states and for u € U, ;4 We set
c(u) = value,.

Now we are able to describe in detail how an execution of an action a € ¥ in 7
is simulated in 7’.

Let 51,52 € S be two global states of 7 such that (s, a,s2) € A. Let us suppose
that s is obtained from s; by means of a transition (s', s") € &,, i.e.

$1Ba =8, S21ap=$" and  s1p\(am) = 52| R\(aE)-
Let u1 € Uyatia be a valid global state of 7/ such that
c(uq) = value,, = s, (7.8)

i.e. u3 covers sj.
Simulating the transition (s1,a,ss) of 7 in 7/ we should obtain a valid global
state us € Uygiiqa of 7' such that

(A} c{ug) = value,, = 35 (uy covers s3),

(B) Vb € £\ {a}, u1(b) = ua(b) (execution of a changes only the local state of a
in 7"),

(C) the new local state us(a) of a in 7" depends only on the partial state U1)Ca

{a cannot access cells that are outside of Ca).

Let ¢’ = uj|c,. First of all let us note that for each r € Ea, Er C Ca, i.e. r is in
the domain of value,r and since u; covers s; we have

Vr € Fa, value, (r) = value,, (r) = s1(r) = s'(r)

Thus, intuitively, a can reconstruct s’ by means of the partial state «’. Now note
that s gives the new values of all registers in aF that are written during the
execution of a, which implies that s” is the first component of the new state us(a)
ofa in 7.

The new time-stamp #s” of a should be chosen in such a way that immediately
after the execution of a this action is indicated as the last action writing into each
Tegister r € aE. We shall show how to calculate ts”(r) for € aE by means of u'.
First note that the signature o is w-redundant, i.e.

(Er x Er)\idy CCnC™!
Wwhich implies that in particular

Er\{a} C Ca (7.9)
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(see Figure 7.19). Let Er = {a;,,...,a;,_,}, where a;, < ... < a;,_,. Since a € Er,
there exists m, 0 < m < k, such that @ = a;,,. From 7.9 it follows that Er \ {a} is
included in the domain of u’. Let

(firstsiy) =v'(a;) for l#m, 0<I<k

and
k-1

pr= Y tsy(r)

1=0,l#m

There exists a unique integer w,, 0 < w, < k, such that
(pr +w,) mod k =m

and we set
ts"(r) = w,

to obtain the time-stamp with required property. In this way we have translated a
transition (s',5") € 8, of 7 into a transition (v, u”) € &, of 7/, where u” = (s", ts").
O

Note that the covering constructed in Proposition 7.5.4 is faithful, the conflict
relation in the simulated fat-system 7 is equal D = C U C~1 U W, where W is the
writing conflict relation induced by o, while the conflict relation in the constructed
fact-system 7' is equal D/ = CuC~! Uidy. Since idyy € W we see that the actions
independent in 7 remain independent in 7. The time-stamp system used in the
proof of Proposition 7.5.4 is adapted from [178].

Proposition 7.5.5 Let 7 = (X,C, X, A) be an fact-system and let o = (X, R, E) be
a w-redundant signature inducing the same causality relation C. Then there exists
a fat-system v/ = (X, R, E, X', A") over o covering T.

Proof: The main idea of the simulation is the following: at each moment every
register r € R of the constructed fat-system 7' will contain a partial state of the
simulated fact-system 7, more precisely it will contain the values of the cells from
the set Er in 7.

For each register r € R of 7’ the local states of r are mappings from Er into X,
by X7 = F(Er; X) we denote the set of all such mappings and X’ = |J,.p X/. is
the set of local states of 7.

Let & C R and let u € F(o; X') be a partial state of 7. The state u is said to
be consistent if

1. ¥r € @, u(r) € X! and
2. U,¢q u(r) is a mapping from |J, ., Er C ¥ into X.

To explain the last condition let us note that for r € @, u(r) € F(Er; X) and the
union of these mappings is again a mapping if they all agree on common parts of
their domains, i.e. if u(r')(a) = u(r")(a) for all ', 7" € a and a € Er' N Er". This
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mapping will be denoted by T, i.e. T(a) = u(r)(a), where r € a and a € Er. Note
that if u is a consistent global state of 7/ then T is a mapping from [ J Er=%
into X, i.e. ©is a global state of 7.

On the other hand, if s € F(Z; X) is a global state of 7 then it determines in a
natural way the corresponding global state u € F(R; X'):

TER

for all r € R, u(r) = sg,.

This global state  is consistent and moreover T = [ J,.c g u(r) = s.

Let U be the set of consistent global states of 7. As we have seen the mapping
c:u+—u, u €U, is a bijection between the set U of global consistent states of 7'
and the set S of global states of 7. The transition relations of 7' will be constructed
in such a way that this bijection will constitute the required covering of by 7/.

First we shall prove the following facts.

Let u; € F(FEa; X') be a consistent partial state of /. Then

U1 € F(Ca; X) and
Vr € ak, Er\ {a} C Ca

To prove the first assertion let us note that by the definition of the direct causality
relation

(7.10)

|J dom(ui(r)) = | J Er=(EoE)a=Ca
r€Fa rcEa
(dom(f) denotes here the domain of a partial function f).

Now suppose that r € ¢F and b € Er\ {a}. Thus a and b are in writing conflict
and, since o is w-redundant, (a,b) € C N C™1, in particular b € Ca. This proves
second assertion.

Now we define transition relations of 7’.

Let 6;, a € X, be a transition relation of v’ and let u; € F(Ea; X’), uy €
F(aE; X'). Then (uy,us) € & if

1. uy is a consistent partial state of 7" and

2. there exists £ € X such that (47, z) € §, and
Vr € aF, Vb€ Er,

if b=a

ua(r)(b) = { :z—l(b) if b#a

By 7.10 this definition is sound and the state us is obviously consistent.
Now it suffices to observe two facts (their easy verification is left to the reader)

L. if 51,53 € S are global states of 7 and (s1,a,52) € A then (u1,a,us) € A’,
where 4, up € U are such that @; = 55,1 = 1,2,
2. if uy € U and (u1,a,u3) € A’ then uy € U and (7, a,uz) € A.

Since U 3 u —— @ is a bijection, these condition imply that this mapping is a
covering of T,
O
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7.6 Language Recognizability by Asynchronous
Automata

In this section we enrich the structure of asynchronous transition systems by adding
to them initial and final states and we examine the recognizability power of the
automata obtained in this way.

A finite asynchronous automaton (faa in short) is a tuple A = (X, R, F, X, A, I,
F), where 7 = (5, R, E, X, A) is a fat-system and I, F C F(R; X) are respectively
the sets of initial and final states. The language L{.A) recognized by A is defined
in the standard way:

L(A) = {z € * | 3sg € I, A(so,z) N F # B}

Finite asynchronous cellular automata (faca) are defined in the analogous way.

A finite asynchronous (cellular) automaton is deterministic if it has at most one
initial state, card(I) < 1, and its global transition relation is a partial mapping, i.e.
for each global state s and a € ¥, card(A(s,a)) < 1.

The main problem considered here is which classes of languages are recognized
by finite asynchronous (cellular) automata over a fixed signature.

Let o be a signature (¢ = (3, R, E) for faa or o = (%,C) for faca). By £Z
(£2) we denote the class of languages recognized by deterministic (respectively
non-deterministic) finite asynchronous (cellular) automata over signature o.

Lemma 7.6.1 Let 7y and T3 be two fat-systems. Let Ay = (11,11, F1) be a finite
asynchronous automaton, Iy, Fy C S1. If 72 covers 7y then there exist sets I, F3
Sy such that card(Iy) = card(ly) and L(A;) = L(Az), where Ay = (72, Iz, F3) and
S; is the set of global states of ;.

Proof: Let ¢ : U — Sy be a covering of 1 by 72. First we set Fy = c ).
To obtain the set I, of initial states of A, we choose exactly one global state from
each set ¢~ 1(s), s € I. (Thus I, is any subset of Sy such that I C ¢ (1) and
Vs € I, card(l3 N c™1(s)) = 1.)

From the definition of covering and from the fact that card(l;) = card(l3) it
results that if A; is deterministic then A, is also. Directly from Proposition 7.5.2
we deduce that L{A;) = L(A3). o

Proposition 7.6.2 Let o1 = (£, R, E) be o w-redundant signature and let o2 =
(2,C) be a signature of a fat-system such that C = (E o E} N 2 is the direct
causality relation induced by 1. Then

£ =L and LT = L7,

Proof: Directly from Proposition 7.5.4, Proposition 7.5.5 and Lemma, 7.6.1. o
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Note that if o1 and o3 are as in Proposition 7.6.2 then the conflict relation in-
duced by 3 is included in the conflict relation for 0. Thus any language recognized
by a w-redundant faa can be recognized by a faca without any loss of concurrency.
For this reason in the sequel we restrain our attention to languages recognized by
finite asynchronous cellular automata.

First we shall prove that without loss of generality we can assume in the sequel
that there is always only one initial state.

Lemma 7.6.3 For each faca A= (X,C, X,A, I, F) there exists a faca A’ over the
same signature ¢ = (X, C) and with only one initial state recognizing the same lan-
guage.

Proof: Let 1 = {s),...,sE}. The local states of the constructed automaton A’ are
k-tuples of the local states of A, X’ = X*. For each i, 1 < i < k, using the i-th
component of the local states of A’ we can easily simulate the behaviour of A with
the initial state s3. The details are left to the reader.

O

Lemma 7.6.4 Let o1 = (£1,C)) and o3 = (X2,C3) be two signatures such that
£.C % and C = Cyn (E; x ;). Then for each language L C &3

Lely iff Lecly,
where u means either d or n.

Proof: Let us note that for each a € ¥1, Cza = CiaU(Cya\ Cia), i.e. the reading
domain of a in 4 is the disjoint union of the reading domain Cja of a in oy and
the subset Coa \ Cja of 3 \ £;. This property is crucial in the construction.

Let A; = (Z1,C1, X1,A1, 83, F1) be a fca recognizing L. The idea is to build
a faca Ay = (Zq, Ca, X3, Az, 82, F3) that works exactly as A; for the words of X}
by ignoring the local states of the cells of X5 \ 1. As the set of local states of As
we take Xy = X7 U {y1,y2}, where y;,y, are new values not belonging to X;. The
initial state s3 is such that sglgl = s} and s3(a) = y; for all a € ¥z \ ;. The
execution of any action a € X \ £; writes the value yo into the cell a. For a € ¥4
and s € F(Caa; X3), (s,7) € 62 € A if (8|¢,q,Z) € 8}, i.€. a ignores the local states
of Cya\ Cia and is executed exactly as in .4;. Now it suffices to take as final states
of A, the states s € F(Xq; X5) such that sy, € F) and s(a) = y; for all a € 2.

Suppose now that Ay = (Zg, Ca, X2, Ag, 53, F3) is a faca recognizing L C £]. We
construct a faca A; = (21, C1, X1, A1, sb, F1) that simulates A; for all computations
generated by the words of ¥} and starting at s3. Note that since L(Ap) C X,
s € A(s3,u) N F, implies that s|s,\5, = 35122\21 (otherwise some action of X3 \ ¥4
should have been executed in u.)

Thus it suffices to take: X; = Xo, s§ = sglzl, Fi={seF(E;X5) |3 ¢
F, s"zl = s and 3’122\21 = sglzz\zl} and finally, for a € %3, s € F(Cya; X4),
T € Xy, (s,x) € 6} € Ay if there exists (s',z) € §; € Ay such that s|; , = s and
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stza.\Cla = Sg|C2a\Cla' It is clear that Yu € X7, (s}, u,s) € Ay iff (s3,u,s') € A,,
! — ' — o2
where Sy, =8 and ST, = 5055,

a

Lemma 7.6.5 Let C1,C; C £2? and C; C Cq, 0; = (E,C;), i = 1,2. Then
i cLd oand L3 C L7,

Proof: Let A; be a faca over 1. To obtain a faca A; over o, recognizing the same
language it suffices to modify slightly the transition relations. Intuitively, although
the automaton .4, executing an action a reads the states of all cells of Cya it will use
effectively only the states of the cells of Cya. Formally, for a € X, s € F(Cqa; X),
x € X, (5,2) € 62 € Ay iff (5c,4,7) € 8, € Ay. Note that if A; is deterministic
then A5 is deterministic as well. 0
In the sequel we shall use the notion of computation paths in a faca
A=(%,C, X, A, sp, F). Such a path is a sequence

ay as a
8ip = 8iy — ...ésin

where s;, are global states, a;, actions and Vk, (1 <k <n) s;, € A(s;,_,,ar). This
computation path is initial if s;; = so, and is accepting if it is initial and s;, is a
final state.

Lemma 7.6.6 Let ¥ = {a}, C =0, 0 = (£,C). Then £¢ = L7 ={},1,a*,a*}.

Proof: First we show that all four languages #,1,a*,a* belong to £2. Taking
6o = {(B,(a, 1))}, s0 = {(a,0)}, z = {0,1} we get a faca recognizing either 1 if
F ={{(a,0)}} or at if F = {{(a,1)}}. The trivial automata recognizing a* and @
are left to the reader.

Let I € £2%. To prove that L is one of the four languages given in the thesis it
suffices to show that a* € L, i > 0, implies a®™ C L.

Let A be a faca over o recognizing a word a'. We consider an accepting com-
putation path for a*:

a a a a
Sg —=—=> 81 —> ... — §;_] —> 8

where sg is the initial and s; a final state. Since C = @ the last transition used in
this computation is always enabled and leads directly to the final state. Thus for
each n > 0, using n times this transition we obtain the computation path

a a a a
So=—> 8§ = 8§ — ... = 8;

e

n times

accepting a™. Thus £ C {0,1,a%,a*} C £Z, and since £¢ C L7 trivially we get

o?

the thesis. o
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Lemma 7.6.7 Let £ = {a}, C = {(a,a)}, 0 = (£,C). Then £ = L7 = Recy.

Proof: Let us note that this is just a special case of the general Theorem 7.6.11.
Intuitively, if A is a faca over o then we get immediately an equivalent finite au-
tomaton B by identifying the state of the unique cell of A4 with the state of B,
This yields the thesis since the deterministic and non-deterministic finite automata
recognize the class Recy, of languages. ' a

Lemma 7.6.8 Let ¥ = {a,b} (a # b), C1 = {(b,a)}, C2 = {(a,0), (a,b), (b,b)},
G (12) {(¢,0)}, Cy = {(a,a),(a,b), (b, )}
Let L = a*b*, L' = bta(a u b)*b.
ThenLe L3, L& LS, Lely, L'eLr L'¢cd.
Proof: To simplify the notation we shall present the global states s € F({a, b}; X)
as pairs (s(a), s(b)) of values of X.
To show that L € £F, we set X = {0,1}, so = (0,0), F = {(1,1)} and

6]

Figure 7.20 presents the transition diagram of the faca defined above.

6,1 b a 51,
01

a b
e TS
(0,0) (1,0) 1,1) —=

Figure 7.20: A deterministic finite asynchronous cellular automaton recognizing L

To show that L € Ly, we take the following faca: X = {0,1}, sp = (0,0),
F={@1,)},

ba |a |l a bp{a bl b
00 1101
011 1 (141

The ‘?ransition diagram of this automaton is given on Figure 7.21.
Finally we shall prove that L ¢ ce .
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a 6
—> (01 0) _—a—> (170) b (1’ 1)

Figure 7.21. A non-deterministic finite asynchronous cellular automaton recognizing
L. Note that only the global states reachable from the initial state are presented
on faca diagrams.

Suppose that Ay = (£, Cq, X, A, sq, F) is a deterministic faca recognizing L and
let n = card(X). Let us examine the accepting computation path for the word
a*be L:

30:a>51=a>...=a,'sn=b>sn+1€F (7.11)

Let 3o = (xo,%0). Since a can change only its local state we have s; = (z;, yo),

0 < i < n, for some z; € X. Similarly as b can modify only its local state we have

Spy1 = (T, y1) for some y; € X. Since n = card(X), some elements should occur
more then once in the sequence

Zoy--ry Zn (7.12)

ie. 3i,7,0<i<j<n, x; ==z; (which implies s; = s;.) Now we can deduce that
for some I, 0 €I < n, x; = ,, i.e. the last element in (7.12) occurs at least twice.
(Otherwise suppose that zj is the last element occuring more than once in (7.12)
and let z; =z for 0 <72 < k < n. Ifk;énthensk:si:a>si+1 andsk=a>sk+1
and as As is deterministic, we get ;41 = Sg+1 and ;41 = k41, in contradiction
with our choice of k.)

Now we take the subpath

5n =81 = (21, %) == 8141 = (T141,Y0) = ... = 8p = (Tn, Yo) (7.13)

of the computation path (7.11). Since Cya = {a} the executions of a do not depend
of the local state of b, therefore replacing yg by y; in each global state of (7.13) we
obtain again a valid computation path:

Snt1 = (@ns 1) = (@1, 51) = (T131,51) = - == (Tn, Y1) = Snta

which shows that $,41 = A(spy1,a™"!). Therefore 5,41 = A{A(sp,a™b),a™!) =
A(sg,a™ba™ )N F, ie. a™ba™ ! € L{A3) and A; recognizes a word not belonging
to L.

To show that L' € L}, we set:

X =1{0,1,2}, so = (0,0), F = {(1,2)} and

ba | B | @ 61’

11

1
2
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Figure 7.22 presents the transition graph for this faca.

b (l,b
, O, O
—=(0,0) (0,1) (1,1)
b
b b b
((CS b (1,2) —=
b b

Figure 7.22. A non-deterministic finite asynchronous cellular automaton recognizing
LI

To prove that L' & £§l let us take a deterministic faca A; = (X, Cq, X, A, 80, F)
over 1. Since A; is deterministic and the reading domain of b is empty, 6 is either
empty or consists of just one transition: &, = {(0,{(b,y1)})} for some y; € X. In
the first case .A; can never execute b and L(.4;) # L. In the second case b is always
enabled and the first execution of b writes y; into the cell b and all subsequent
executions of b do not change the local state of b. Thus executing ba or bad™, n > 0,
at the initial state we arrive at the same global state, i.e. ba € L(A;) iff bab € L(A;)
and L' # L(A)).

O

Theorem 7.6.9 (Hierarchy Theorem) Let Cy,Cy C X2, 0, = (3,C;), 1 = 1,2.
Then £E C L2 iff C, C Co.

Proof: The right to left implication is given by Lemma 7.6.5.

Now suppose that Cj is not included in Cs. There are two cases to examine.

CASE 1: There exists a € ¥ such that (a,a) € C; \ Cs.

Then by Lemma 7.6.6, Lemma 7.6.7 and Lemma 7.6.4 any recognizable subset
of ¢* different from @, 1,a*,a* belongs to £Z but not to £Z , for example (aa)* €
L£i\cd .

o1 o

CASE 2: There exist a,b € X, a # b, such that (b,a) € C; \ Ca.

Let . = {g,b} and €' = C; N (B, x &,), C" = Can (T X ;) 0’ = (%,,C"),
0" = (X,,C"). Then {(b,a)} C C" and C" C {(a,a), (a,b), (b,b)}. By Lemma 7.6.5
ZIllid {ﬁlz]ma 7.6.8, atbt € £4,\ L4, and applying Lemma 7.6.4 we see that atbt €

o \ L5, a
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Theorem 7.6.9 describes all possible inclusions between families ‘C‘(iE &) with C
‘(iz 0) is the least while

L‘(iz ) the greatest family in this hierarchy. Moreover this hierarchy is proper:
&

ranging over all binary relations over ¥. We see that £

Ll en = 5?2,0,> iff Cy = Co.

The precise characterization of all possible inclusions in the hierarchy of the
classes L',”Z’ o of languages recognized by non-deterministic faca is an open prob-
lem. The only fact known for this classes is the trivial inclusion provided by
Lemma 7.6.5. We should note here that Lemma 7.6.8 gives two examples of signa-
tures for which the inclusion £¢ C £ is strict, which shows that deterministic and
non-deterministic hierarchies are different.

The main open problem in the theory of asynchronous automata is to charac-
terize the classes £¢ and L7 for any signature ¢. However, there is one important
case where such a characterization is known.

Let ~¢ be the smallest congruence over ¥* such that

o ab~¢ ba if (a,b) g CUC!
® aa ~caif (a,a) ¢ C

Let
Rec(L*,C)={LC X" |L€Recy and Vz,y €T, s ~cy = (z € L & y € L)}

Thus Rec(X", C) consists of all recognizable languages that are closed under =~
The following inclusions are obvious.

Fact 7.6.10 IfC C X% and ¥ = (X, C) then
L2 C L7 C Rec(Z*,0)

Proof: It suffices to note that if 4 is a faca over ¢ then ab ~¢ ba and aa ~c a
imply A(s,ab) = A(s,ba) and A(s,aa) = A(s, a) respectively. a

The main result of the theory of asynchronous automata (cf. [46, 277]) indi-
cates that under some condition imposed on C the inclusions in Fact 7.6.10 can be
replaced by equalities.

Theorem 7.6.11 (Main Theorem) Let o = (X,C). If the relation C C £2 is
symmetric and reflezive (C = CUC~ 1 Uidy) then

L = L = Rec(T*,C)

Let us note that if the relation C' is symmetric and reflexive then C is equal with
the conflict relation D and the family Rec(X*, C) can be identified with the family
of recognizable subsets of the free partially commutative monocid M(Z, I), where
I=x2 \ D is the independency relation induced by ¢. Thus Theorem 7.6.11 states
that if C is symmetric and reflexive then finite asynchronous cellular automata

[REm—
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can recognize exactly all recognizable subsets of the corresponding free partially
commutative monoid.

On the other hand if C is not symmetric or not reflexive, i.e. if C is strictly
included in D then by the Hierarchy Theorem (Theorem 7.6.9) L¢ is also strictly
included in the family of recognizable subsets of M(Z, I).

We end this section with a discussion of the adequacy of cp-graph semantics for
finite asynchronous automata, for the sake of simplicity of presentation we restrain
our considerations to cellular automata. As we noted in Subsection 7.3.2 (Proposi-
tion 7.3.9) cp-graphs constitute actually a representation of traces. However there
are other trace representations, for example by equivalence classes of words under
~p relation or by dependence graphs (cf. Chapter 2, [1]) and the question can be
raised why we still need this new trace model. Let o = (%, C) and v € ¥*. First
note that each event of the cp-graph ¥,(u) = (Evy, Cay, Pry, A,) has uniformly
bounded in-degree for Ca, and Pr,:

if e € Ev, and Ay(e) = a then card({¢’ € Fv, | (¢/,¢) € Ca,}) < card(Ca)
and card({e’ € Ev, | (¢/,e) € Pr,}) < card{Da), where D is the conflict relation
induced by o (cf. the end of Section 7.4 for the definition of cp-graphs adapted for
cellular automata). This boundedness property enables to introduce directly finite
automata over cp-graphs. For such an automaton B we should specify

¢ a finite set X of states,

e initial states that are associated with each initial event e € Ew, (e is initial
if {¢’ € Ev, | (¢/,e) € Ca,} = B, we can have several initial events with the
same label, cf. Example 7.3.10, in this case they all have the same initial
state); these states depend on the label of e but not of e itself,

¢ a transition mapping enabling to calculate the state of each non-initial event
e € Ev, if the following information is provided

— the label A,(e) of e and
— the labels and the states of all the events e’ such that (¢/,¢e) € Ca,,

o the set of final states, these states are partial mappings from X into X.

A run of the automaton B over cp-graph U, (u) = (Ev,, Cay, Pr,,\,) is a mapping
7 from Ewv, into X associating with each initial event its initial state and with the
other events the state calculated by means of the transition mapping of B. The run
T is accepting if
{(Au(e),7(e)) | € € Ev, is a final event} (7.14)
s a final state (an event e is final if Ve' € Euvy, Ay (') = Au(e) = (¢,€) € Pry).
Note that Pr} totally orders all events with the same label, i.e. (7.14) defines
A partial mapping from ¥ into X, the domain of this mapping is the set of letters
that occur in .
Given a faca A = (%,C, X, A, 50, F) it is trivial to construct a corresponding

: ©p-graph automaton B. The set of states of B is simply equal X. For a C %,
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s : a — X is a final state of B iff the mapping s’ : ¥ — X such that Va ¢ a,
s'(a) = s(a) and Va € X\ a, s'(a) = sg(a) is a final state of A.

Let u € &* and ¥, (u) = (Evy, Cay, Pry, M\). We shall describe how a run r
of B over ¥,(u) simulates the execution of A on u (this will implicitly explain how
the transition of B is constructed from the transition relations of A).

The initial state r(e) of each initial event e € Ev, is set to be equal so{Au(e)).
Let e be a non-initial event such that r is already defined for all events e’ such that
(¢',e) € Cay. Suppose that A,(e) = a. Then we set 7(e) = z € X if there exists a
transition (s,z) € 8, of A such that

¢ Ve' such that (€', e) € Ca,, s(A.(e')) =r(e),
e Vo e Ca\ {A(e') | (¢/,e) € Cay}, s(b) = s0(b) (note that always {A,(e’) |

(e'ye) € Ca,} C Ca).

In a similar way we can easily transform a cp-graph automata to finite asyn-
chronous cellular automata.

Thus we see that asynchronous cellular automata can be interpreted, after some
minor modifications, as automata over cp-graphs.

It should be noted that, actually only the direct causality relation Ca,, is really
essential for cp-graph automata, the role of the direct precedence relation Pr, is
limited to indicate the last occurrence of each action — this information is needed
in order to find the final state of a run. If the relation C is reflexive then we can
get rid of Pr, at all since in this case Ca, orders totally all occurrences of the same
action in Fv, 1n the same way as Pr,.

The fact that asynchronous automata can be viewed as finite automata over la-
belled acyclic graphs associated to traces was noted explicitly by Thomas[263]. How-
ever Thomas originally used reduced dependence graphs, which makes the transfor-
mations between asynchronous automata and graph automata a bit more complex.
Let us note also that for non-reduced dependence graphs there is no natural way to
define finite automata since the in-degree of vertices of these graphs is not bounded.

7.7 Bibliographical Remarks

The Main Theorem (Theorem 7.6.11) was proved in Zielonka[277]. Subsequently the
proof was simplified and improved in Cori et al.[46]. The reader can find one of the
direct general constructions of deterministic asynchronous (cellular) automata in
Chapter 8. Unfortunately all known such constructions are quite involved and give
rise to a considerable explosion of the number of states. We should note however
that in some interesting cases it is possible to present simpler and more transparent
constructions.

The first case is when we allow nondeterminism. Nondeterministic asynchronous
automata for a given trace language were built by Pighizzini[228, 227]. Recently
methods for converting nondeterministic asynchronous automata to deterministic
ones were devised by Muscholl[198] and Klarlund et al.[154].
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The construction of deterministic asynchronous automata becomes also simpler
if we add some constraints on their topology, for example if the signature can be
represented by an undirected tree Métivier{196], Perrin[223], Bertoni et al.[21]. Let
us note that the last paper [21] can be considered as a precursor of the theory,
although written in the context of labelled Petri nets, it actually provides a non-
trivial special case of Theorem 7.6.11. Unfortunately, this paper had little impact
on the further development of the theory since it did not appear in the proceedings
and its circulation was very limited. An elegant extension of these methods to the
case of triangulated dependency graphs was proposed by Diekert and Muscholl and
is presented in Chapter 8,

Reductions between various types of asynchronous automata were studied by
Cori et al.[48], Pighizzini[229, 227]. Section 7.5 generalizes these results.

The minimalization problem for asynchronous automata was considered by Br-
uschi et al.[31], and Pighizzini[229, 227]. The main result is that in general the cat-
egory of deterministic asynchronous (cellular) automata recognizing a given trace
language does not admit the unique minimal automaton.

Probabilistic asynchronous automata were examined by Jesi et al. [145] and
Pighizzini [227].

Recently asynchronous automata were successfully used to recognize sets of in-
finite traces (Gastin et al.[113], Dickert et al.[62].)

Asynchronous cellular automata were introduced by Zielonka[278]. In this paper
also a “safety” property of asynchronous automata is considered. (A safe automaton
is an automaton such that each initial computation path can be extended to an
accepting path.)

Theorem 7.6.9 (Hierarchy Theorem) is new. Also the general definitions of
asynchronous {cellular) automata given in this chapter are new; previously only
automata inducing symmetric and reflexive conflict relations were considered in the
literature.

Let us note finally that although asynchronous automata were introduced ex-

" plicitly in [277], actually similar models have much longer history and were used to

solve problems in distributed computing. In this domain especially some topologies,
for example with circular connection relation, give rise to appealing and non-trivial
problems. For example the computational model used by Dijkstra [65] in his fa-
mous self-stabilization problem has immediate representation as an asynchronous

" automaton (intuitively the system considered in [65] consists of a ring of finite state

automata each of them able to read the state of its two neighbours). As another
interesting algorithmic problem solved by Mazurkiewicz in a similar model we can
mention the ranking problem [191]. We should indicate that the problems such as
the two ones mentioned above have quite different flavour than the problems con-
sidered in this chapter — the possible sequences of actions executed in the system
are of no interest for self-stabilization or ranking problems, in both of them we want
to construct automata such that ultimately all reachable global states verify some
8pecial property.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

