Higher categories, polygraphs and homotopy
Friday December 10, 2021, 2PM, Salle 1007
Alain Prouté À la découverte des preuves mathématiques formelles
Higher categories, polygraphs and homotopy
Friday December 3, 2021, 2PM, Salle 1007
Guillaume Laplante-Anfossi (Université Sorbonne Paris-Nord) La diagonale des opéraèdres
Référence: https://arxiv.org/abs/2110.14062
Higher categories, polygraphs and homotopy
Friday November 26, 2021, 2PM, Salle 1007
Dimitri Ara (Université d“Aix-Marseille) Comparaison des nerfs pour les n-catégories strictes
Le but de cet exposé, basé sur un article en collaboration avec Georges Maltsiniotis, sera d'expliquer des généralités sur la comparaison de foncteurs nerf et de montrer que pour les n-catégories strictes le nerf multi-simplicial, le nerf cellulaire et le nerf de Street sont tous équivalents.
Higher categories, polygraphs and homotopy
Friday November 5, 2021, 2PM, Salle 1007
Albert Burroni (IRIF) Les esquisses revisitées comme présentations équationnelles des algèbres graphiques (dans une perspective doctrinale)
Higher categories, polygraphs and homotopy
Friday October 22, 2021, 2PM, Salle 1007
Antoine Allioux (IRIF) Structures supérieures cohérentes en théorie des types homotopiques
La théorie des types de Martin-Löf peut être vue comme une fondation des mathématiques. Il a été montré que certains de ses modèles validaient une interprétation homotopique des types, ce qui a motivé une nouvelle ligne de développement de celle-ci nommée théorie des types homotopiques.
Dans cette théorie, les types ne sont pas vus comme de simples ensembles car ils ont une structure d'infini-groupoïde non-triviale conférée par leurs types identité. D'où l'idée de formaliser des résultats d'algèbre supérieure en exploitant la structure supérieure des types. Néanmoins, décrire celle-ci de façon interne reste une question ouverte. C'est à dire que l'on peut énoncer des propositions concernant des infini-groupoïdes arbitraires mais que l'on ne sait pas construire une large classe d'infini-groupoïdes, en particulier ceux dont la structure supérieure n'est pas triviale ou tronquée à partir d'une certaine dimension.
Nous proposons une approche consistant à étendre la théorie des types avec un univers de monades polynomiales satisfaisant leurs lois de façon définitionnelle. Cela nous permet de présenter les types et leur structure supérieure, et ainsi d'internaliser un certain nombre de résultats dont le fait que les types sont des infini-groupoïdes.
Higher categories, polygraphs and homotopy
Friday October 1, 2021, 2PM, Salle 1007
El Mehdi Cherradi (IRIF) Dérivateurs de Quillen et doubles catégories
Dans cet exposé, nous étudierons comment le prédérivateur associé à une telle catégorie relative se restreint en un objet simplicial dans la catégorie CAT des catégories (non nécessairement petites). Cet objet simplicial peut être vu comme un “nerf homotopique” qui décrit les chemins de longueurs n dans la catégorie d'origine, vus à homotopie près.
Partant de ces observations, nous montrerons que dans le cas d'une catégorie de modèle, l'objet simplicial satisfait une condition de Segal, et définit pour cette raison une double catégorie. Cette double catégorie peut être vue comme combinant en une seule structure la catégorie de modèle d'origine (horizontalement) et sa catégorie homotopique (verticalement).
Nous montrons aussi que la construction précédente est compatible avec la structure de dérivateur établie par Cisinski pour un prédérivateur associé à une catégorie de modèle : on obtient ainsi un nouveau dérivateur prenant ses valeurs dans la catégorie DblCAT des doubles catégories plutôt que dans CAT.
Higher categories, polygraphs and homotopy
Friday June 4, 2021, 2PM, Salle 1007
Léonard Guetta (IRIF) Les préfaisceaux en groupoïdes comme modèles de types d'homotopie
En fait, la propriété (2) admet même la généralisation suivante due a Joyal et Tierney :
(4) Les groupoïdes internes aux ensembles simpliciaux modélisent les types d'homotopie.
Il est alors naturel de se demander s'il existe d'autres catégories de préfaisceaux qui admettent les mêmes propriétés, et qui sont donc, en un certain sens, aussi “bonnes” que la catégorie des ensembles simpliciaux pour faire de la théorie de l'homotopie. Dans Pursuing Stacks, Grothendieck développe la théorie des catégories tests, qui sont, très grossièrement parlant, les petites catégories A tels que les préfaisceaux sur A satisfont à l'analogue de la propriété (1) énoncée plus haut. Le constat est clair : la catégorie des simplexes est loin d'être la seule à satisfaire cette propriété et les catégories tests sont légion.
Dans cet exposé, je présenterai mes travaux récents portant sur la théorie des “catégories tests au sens des groupoïdes”, variation de la théorie des catégories tests de Grothendieck et qui sont, grossièrement parlant, les petites catégories A tels que les préfaisceaux sur A satisfont à l'analogue de la propriété (4) énoncée plus haut. Un des résultats importants que je présenterai est :
Une (petite) catégorie est test si et seulement si elle est test au sens des groupoïdes.
Outre le fait qu'il permet de déduire de nombreux nouveaux modèles des types d'homotopie, ce résultat non trivial permet de renforcer, une fois de plus, la pertinence de la notion de catégorie test.
Si le temps me le permet, je terminerai l'exposé par des généralisations conjecturales de cette théorie des “catégories test au sens des groupoïdes”, qui visent notamment à remplacer les groupoïdes par des n-groupoïdes (faibles).
https://u-paris.zoom.us/j/89055476938?pwd=YzVQVTFYbFpvYVlLa3Nadk1PMUlOUT09
Higher categories, polygraphs and homotopy
Friday March 19, 2021, 2PM, https://u-paris.zoom.us/j/89055476938?pwd=YzVQVTFYbFpvYVlLa3Nadk1PMUlOUT09
Chaitanya Leena-Subramaniam (IRIF) Structures algébriques décrites par les théories à types dépendants
Il est naturel de se demander quelles structures algébriques admettent une telle description et si l'on peut les reconnaître « dans la nature ». Dans cet exposé je répondrai à cette question.
Plus précisément, je montrerai que :
1. Les signatures de types dépendants correspondent exactement aux catégories directes localement finies. (Cette description est due à Makkai et porte le nom de “simple category” dans ses travaux sur les FOLDS.)
2. Si C est une catégorie directe localement finie (telle que celles des globes, des semi-simplexes, ou des opétopes), alors les contextes de variables typées par C sont exactement les complexes cellulaires finis dans [C^op, Ens]. (N.B. : La catégorie C étant directe, les préfaisceaux sur C admettent un modèle cellulaire donné par les inclusions de bords de représentables.)
3. La catégorie des « théories algébriques typées par une signature C » est équivalente à celle des monades finitaires sur [C^op, Ens].
4. La catégorie des modèles dans Ens d'une théorie algébrique typée par C est équivalente à la catégorie des algèbres de la monade finitaire correspondante.
On en déduit (parmi d'autres) les exemples des théories algébriques à types dépendants des oméga-catégories et oméga-groupoïdes (strictes et faibles), des opérades colorées (planaires), des ensembles opétopiques, et des combinades (sur les arbres planaires) de Loday. Je les expliquerai.
5. Enfin, je montrerai un résultat un peu surprenant : les théories algébriques à types dépendants sont aussi expressives que les théories essentiellement algébriques ou les esquisses projectives. Autrement dit, toute catégorie localement finiment présentable est la catégorie des modèles dans Ens d'une théorie algébrique à types dépendants.
Ce dernier peut aussi être vu comme conséquence de la version non-homotopique d'un résultat de Cisinski permettant de calculer les extensions de Kan à droite homotopique des préfaisceaux à valeurs dans une catégorie de modèles par passage aux préfaisceaux sur des catégories directes (localement finies).
enregistrement : https://u-paris.zoom.us/rec/share/kFyV5h7BGHVkvjhL4l6aIS4jtCLAN82xvvG96xiPcbkmQR4hTpQASm3n_pdtRpZm.kVgfyVRrwhQIjkw6?startTime=1616158923000
Higher categories, polygraphs and homotopy
Friday March 12, 2021, 2PM, https://u-paris.zoom.us/j/89055476938?pwd=YzVQVTFYbFpvYVlLa3Nadk1PMUlOUT09
Félix Loubaton (Université Côte d'Azur) Conditions de Kan sur les nerfs des oméga-catégories
Dans cet exposé, après des rappels sur les oméga-catégories, nous présenterons une preuve de ce fait. Si le temps le permet, nous présenterons une généralisation aux ensembles compliciaux.
Cet exposé est basé sur le papier suivant : arxiv.org/abs/2102.04281
enregistrement : https://u-paris.zoom.us/rec/share/5izThvaQeeyBV3VSAwVsMvrWkedrkSLc9Pd37p3vGIZpAXHnbWPUi6HdmXms9gf3.Xamu3i1JzpsZJAI5
Higher categories, polygraphs and homotopy
Friday February 12, 2021, 2PM, https://u-paris.zoom.us/j/89055476938?pwd=YzVQVTFYbFpvYVlLa3Nadk1PMUlOUT09
Thibaut Benjamin (LIX) CaTT : Une theorie des types qui decrit les omega-categories faibles