Thematic team Algebra and computation
Inria project-team Picube (Inria)
Thematic team Proofs and programs
Tuesday at 3:00pm, room 3071
The calendar of events (iCal format).
In order to add the event calendar to your favorite agenda, subscribe to the calendar by using this link.
Subscribe to the gt-semantics mailing list here: https://listes.u-paris.fr/wws/info/gt.semantique.irif
Semantics
Tuesday March 18, 2025, 3PM, Salle 3071
Vladimir Zamdzhiev (LMF, Inria Saclay) Operator Spaces, Linear Logic and the Heisenberg-Schrödinger Duality of Quantum Theory
Semantics
Wednesday March 12, 2025, 10:45AM, Salle 3071
Elena Di Lavore (Oxford) Effectful streams for dataflow programming
Semantics
Tuesday February 25, 2025, 3PM, Salle 3071
Ariadne Si Suo (Cambridge) Type Checking is Proof Reductions in Classical Linear Logic
Semantics
Tuesday February 18, 2025, 3PM, Salle 3071
Quentin Aristote Monotone weak distributive laws over the lifted powerset monad in categories of algebras
Semantics
Wednesday February 12, 2025, 10:45AM, Salle 3071
Umberto Tarantino Arrow algebras, algebraic structures for modified realizability
Semantics
Tuesday February 4, 2025, 3PM, Salle 3071
Arturo De Faveri Clones, Boolean algebras, and hypervarieties
Semantics
Tuesday January 28, 2025, 3PM, Salle 3071
Rémi Di Guardia A simple proof of sequentialization for proof-nets, and links with graph theory
[Joint work with Olivier Laurent, Lorenzo Tortora de Falco and Lionel Vaux Auclair]
Semantics
Tuesday January 7, 2025, 3PM, Salle 3071
Thomas Ehrhard Upper approximating probabilities of convergence of PCF programs, using extensional probabilistic coherence spaces
Semantics
Tuesday November 12, 2024, 3PM, Salle 3071
Pedro Amorim (Oxford) A Unified Approach to Markov Kernels and Linear Operators
In this talk I will go over recent work of mine that tries to establish a formal connection between these two families of semantics. I will start by presenting a new core calculus for programming with Markov kernels and linear operators, will show that this formalism encompasses useful models from the probabilistic semantics literature and will conclude by sketching some applications of this formalism to the new research program of synthetic probability theory.
Semantics
Tuesday November 5, 2024, 3PM, Salle 3071
Louis Lemonnier (University of Edinburgh) A recipe for the semantics of reversible programming
(Self) references: Classical reversible semantics: https://doi.org/10.4230/LIPIcs.FSCD.2024.19 / https://arxiv.org/abs/2309.12151 First-order quantum semantics (chapter 3): https://theses.hal.science/tel-04625771 / https://arxiv.org/abs/2406.07216 Non-cartesian guarded recursion: https://arxiv.org/abs/2409.14591
Semantics
Tuesday October 15, 2024, 3PM, Salle 3071
Jean Krivine (IRIF) Semantics of reversible computations
Semantics
Wednesday October 9, 2024, 3PM, Salle 3052
Joshua Wrigley (Queen Mary University of London) Capturing theories via isomorphisms: classifying topoi and topological groupoids
Removing the countable categoricity assumption necessitates using topological groupoids rather than groups. We will describe a groupoidal generalisation of the Ahlbrandt-Ziegler result using topos theory.
Our result extends the results in the topos-theoretic literature of Awodey, Butz, Caramello, Forssell and Moerdijk, while being orthogonal to the parallel generalisation of Ben Yaacov.
Semantics
Wednesday September 25, 2024, 10:45AM, Salle 3071
Raphaëlle Crubillé (Aix-Marseille Université) Regular samplers and the De Finetti construction in Integrable Cones
[1] B. Jacobs and S. Staton. De finetti’s construction as a categorical limit, CMCS 2020.
Semantics
Wednesday May 22, 2024, 10:30AM, Salle 3052
Jean-Simon Lemay Free Differential Storage Modalities
Semantics
Wednesday April 3, 2024, 10:45AM, Salle 1020
Thomas Nowak (LMF) Topological Characterization of Task Solvability in General Models of Computation
Joint work with Hagit Attiya and Armando Castañeda.
Semantics
Wednesday February 7, 2024, 2PM, Salle 3052
Francesca Guffanti (University of Luxembourg) Henkin’s Theorem for doctrines
Semantics
Wednesday January 17, 2024, 10:45AM, Salle 3052
Aloÿs Dufour (LIPN, Université Sorbonne Paris Nord) Exporting Linear Logic Approximations to Programming Languages
Semantics
Wednesday December 20, 2023, 10:45AM, Turing conference room of the Sophie Germain building (first basement) of Université Paris Cité
Paige North (Utrecht University) Fuzzy type theory
This is joint work with Shreya Arya, Greta Coraglia, Sean O’Connor, Ana Tenório, and Hans Riess.
Semantics
Wednesday December 20, 2023, 9:30AM, Turing conference room of the Sophie Germain building (first basement) of Université Paris Cité
Réunion De L'Anr Pps Day 2 of the meeting
Vous trouverez toute information utile sur la page de l'ANR PPS: https://www.irif.fr/pps-meeting5-2023
Semantics
Tuesday December 19, 2023, 6PM, Salle 3052
Jacques Sakarovitch (Telecom Paris) Conjugacy and equivalence of weighted automata
The notion of generating function of regular languages leads to the introduction of the model of weighted automata. The conjugacy of weighted automata, a concept borrowed to symbolic dynamics, is then defined and it is shown how the above statement can be derived from the central result of this work: 'Two equivalent weighted automata are conjugate to a third onewhen the weight semiring is B, N, Z, or any Euclidean domain (and thus any (skew) field)'.
This talk is based on a joint work with Marie-Pierre Béal and Sylvain Lombardy.
Attention à l'horaire inhabituel
Semantics
Tuesday December 19, 2023, 10AM, Turing conference room of the Sophie Germain building (first basement) of Université Paris Cité
Réunion De L'Anr Pps Day 1 of the meeting
Vous trouverez toute information utile sur la page de l'ANR PPS: https://www.irif.fr/pps-meeting5-2023
Semantics
Wednesday November 22, 2023, 10:45AM, Salle 3052, 3ème étage du bâtiment Sophie Germain
Jérémy Ledent (IRIF) Simplicial Complex models for Distributed Computing
Semantics
Wednesday November 15, 2023, 10:45AM, Salle 3052
Davide Quadrellaro (University of Helsinki) Towards AECats for Team Semantics
Semantics
Tuesday November 14, 2023, 9:45AM, Salle 1007
Rémy Cerda (Université d'Aix-Marseille) Uniformity and the Taylor expansion of infinitary λ-terms
Séance à l'horaire exceptionnel de 9h45 à 11h
Semantics
Tuesday November 7, 2023, 10:45AM, Salle 3052, 3ème étage du bâtiment Sophie Germain
Masahiro Hamano (NCKU, Taiwan) A Measure-Theoretical Linear Exponential Comonad and its Double Glueing Lifting
(i) A monoidai category of s-finite transition kernels is introduced and shown to have a linear exponential comonad. The s-finitness, recently rediscovered by Staton for probabilistic programming semantics, is a relaxation of the traditional sigma finiteness, allowing the retention of Fubini-Tonelli Theorem, which theorem guarantees the functorial monodical product. Our focus on s-finiteness lies in its ability to accommodate an exponential construction tailored in stochastic process. To achieve this, we employ Melliès-Tabareau-Tasson free exponential construction, utilising equalisers on monoidal symmetries and their limit, These equalisers and limit find instances in measure-theoretic exponential both on measurable spaces and on kernels. (ii) A continuous orthogonality of linear logic is formulated in terms of integral between measures and measurable functions. The orthogonality embodies a simple reciprocity on kernels actions on measurable functions and measures. Following Hyland-Schalik's double gluing construction with tight orthogonality, we show that the free exponential of (I) is lifted to the tight orthogonal category over the s-finite kernels. To achieve this lifting, we rely the coherence of the limit with equalisers imposed by MTT, This coherence is shown to be realised through the Lebesgue monotone convergence theorem. Note that both (i) and (ii) do not incorporate any closed structure for monoidal products in the continuous framework, making them inconclusive as a complete model of linear logic.
Semantics
Wednesday October 25, 2023, 10:45AM, Salle 3052, 3ème étage du bâtiment Sophie Germain
Guillaume Geoffroy (IRIF) An introduction to integrable cones as a model of linear logic
Semantics
Wednesday October 18, 2023, 10:45AM, Salle 3052, 3ème étage du bâtiment Sophie Germain
Pierre Clairambault (CNRS, Université d'Aix-Marseille) From Thin Concurrent Games to Relational Models
Recently, there has been renewed interest in various extensions of relational models; either quantitative (e.g. the weighted relational model), or proof-relevant (e.g. distributors / generalized species of structure). In this talk, I will present recent results examining this dynamic-to-static question for such generalized relational models; in particular I will aim to arrive at a recent result obtained together with Olimpieri and Paquet: a cartesian closed pseudofunctor from the cartesian closed bicategory of thin concurrent games, to that of Fiore, Gambino, Hyland and Winskel's generalized species of structure.
Semantics
Wednesday October 4, 2023, 10:45AM, Salle 3052, 3ème étage du bâtiment Sophie Germain
Ryan Kavanagh (McGill University) Stable Semantics for Recursive Session-Typed Processes
Semantics
Tuesday July 25, 2023, 10:30AM, Salle 146 (Olympe de Gouges)
Clovis Eberhart (National Institute of Informatics (NII, Tokyo)) A Compositional Approach to Parity Games
Semantics
Tuesday February 21, 2023, 10:30AM, Salle 1007
Nima Rasekh (Max Planck Institute in Mathematics (MPIM) Bonn) Category Theory of Universes
Semantics
Tuesday January 10, 2023, 11AM, Salle 1007
Paul Ruet (IRIF) Asymptotic cones of groups and complexity
Semantics
Tuesday December 6, 2022, 10:30AM, Salle 1007
Ariadne Si Suo (University of Oxford) Semiring Tensor and Iteration Theory
A basic class of effects comes from the algebraic theory of modules for a semiring. The tensor of such theories is determined by the usually more tractable semiring tensor. I’ll give some examples, and then look at how the tensors work in languages with iteration. Our main contribution concerns an important class of subtheories of module theories. We observe that the subtheory tensor is also determined by the semiring tensor for several fundamental effects. I'll look at some examples of these subtheories and their tensors, and discuss how they support iteration via the underlying subsets.
This is my undergraduate summer project with Cristina Matache, Sean Moss, and Sam Staton.
Semantics
Friday November 25, 2022, 10:30AM, Salle 3052
Marco Abbadini (Université de Salerno) A generalization of de Vries duality to closed relations between compact Hausdorff spaces
We propose an alternative approach, where morphisms between de Vries algebras are certain relations and composition of morphisms is usual relation composition. This gives a solution to the aforementioned drawback of DeV. The usage of relations as morphisms between de Vries algebras allows us to extend De Vries duality to a duality for the larger category of compact Hausdorff spaces and closed relations, solving a problem raised by G. Bezhanishvili, D. Gabelaia, J. Harding, and M. Jibladze (2019).
I will discuss the strong connections with the literature on domain theory, in particular with the notions of R-structures, information systems and abstract bases (Smyth, Scott, Abramsky, Jung, Vickers), and with other duality theoretical results (Jung, Sünderhauf, Kegelmann, Moshier).
Semantics
Monday November 14, 2022, 2PM, Salle 3052
Floris Van Doorn (Université de Paris Saclay) Formalizing sphere eversion in Lean
One such result is the sphere eversion project, a formalization that shows that you can turn a sphere inside out without creasing or tearing it. We prove sphere eversion as a corollary of a much deeper theorem in differential topology, the h-principle, proven by Mikhael Gromov in 1973. The h-principle (or homotopy principle) roughly states that the only obstructions to the existence of a solution to a partial differential relation come from algebraic topology, e.g. because there is some algebraic invariant that prevents any solution from existing. This project is a collaboration of Patrick Massot, Oliver Nash and me.
Semantics
Tuesday September 27, 2022, 10:30AM, Salle 3052
Rick Blute (University of Ottawa) Finiteness Spaces and Monoidal Topology
In this talk, we'll briefly review some previous results which demonstrate the utility of finiteness spaces in the types of settings we are considering and then introduce monoidal topology, and finally consider possible extensions of monoidal topology via finiteness spaces. By using Ehrhard's linearization construction, we can instead consider relations on finiteness spaces which take values in a positive partially ordered semiring. In particular, we no longer require infinitary operations. This type of semiring is important in the theory of weighted automata among other places.
Semantics
Monday September 26, 2022, 2PM, Bâtiment Sophie Germain, salle 1007
Marek Zawadowski (Université de Varsovie) Polynomial and analytic functors, revisited
I will start with some easy examples showing how these structures can be related to one another in the category Set. It turns out that polynomial functors and monads are related to Kleisli algebras, whereas analytic functors and monads are related to Eilenberg-Moore algebras for the same monad.
Then I will show that in fact this kind of structures and relations between them can be constructed in any 2-category with some mild completeness properties, whenever a lax monoidal monad sits inside it.
Semantics
Tuesday June 28, 2022, 9:30AM, Salle 3052
Eigil Fjeldgren Rischel (University of Strathclyde) An invitation to categorical cybernetics
Attention à l'horaire inhabituel
Semantics
Monday May 9, 2022, 4:30PM, Exposé en ligne depuis San Diego sur galene
Chaitanya Leena Subramaniam (University of San Diego) The higher universal algebra of dependently typed theories
In this talk, I will define “dependently typed algebraic theories” (DTTs), a strict subclass of GATs for which all of the universal algebra of Lawvere-Bénabou theories generalises perfectly. Happily, the GATs describing many familiar algebraic structures (such as algebraic n-categories and n-groupoids, n ≤ ∞) are DTTs. Moreover, we will see that every kind of Set-based algebraic structure defined using finite limits can be classified by (i.e. has a syntactic description in the form of) some DTT. DTTs are especially important in the context of Martin-Löf Type Theory, since they correspond to algebraic definitions admissible within this syntactic framework.
Semantics
Tuesday May 3, 2022, 4:30PM, Exposé en ligne depuis San Diego sur galene
Chaitanya Leena Subramaniam (University of San Diego) The universal algebra of dependently typed theories
A different approach involves replacing the simple sorts of Lawvere-Bénabou theories with dependent types, while continuing to allow only total functions, such as in Cartmell's notion of generalised algebraic theory (GAT). Indeed, many algebraic structures defined using finite limits (such as categories) have more natural descriptions by GATs than by EATs. However, much of the elegant universal algebra of Lawvere-Bénabou theories, such as their equivalent description as monads, cannot be recovered for GATs (“GATs are a bit too general”).
In this talk, I will define “dependently typed algebraic theories” (DTTs), a strict subclass of GATs for which all of the universal algebra of Lawvere-Bénabou theories generalises perfectly. Happily, the GATs describing many familiar algebraic structures (such as algebraic n-categories and n-groupoids, n ≤ ∞) are DTTs. Moreover, we will see that every kind of Set-based algebraic structure defined using finite limits can be classified by (i.e. has a syntactic description in the form of) some DTT. DTTs are especially important in the context of Martin-Löf Type Theory, since they correspond to algebraic definitions admissible within this syntactic framework.
Semantics
Tuesday April 5, 2022, 10:30AM, Salle 3052
Najwa Ghannoum (Université de Nice) Classification of finite categories with grouplike endomorphism monoids
Semantics
Monday March 28, 2022, 11AM, Salle 3052
Sylvain Douteau (Stockholm University) Théories de l'homotopie stratifiées et équivalences de Kan-Quillen stratifiées.
Semantics
Monday March 28, 2022, 9:30AM, Salle 3052
Pierre-Alain Jacqmin (Université catholique de Louvain) Propriétés d'exactitude stables par pro-complétion
Semantics
Monday November 29, 2021, 3:30PM, Salle 3052
Ivan Di Liberti (Czech Academy of Sciences) Context, Judgement, Deduction
The talk is based on a joint work with Greta Coraglia: https://arxiv.org/abs/2111.09438
Semantics
Tuesday November 16, 2021, 10:30AM, Salle 3052
Nicolas Blanco (University of Birmingham) Four equivalent perspectives on models of LL
First, I will recall the usual perspective as a category with extra structure to interpret the connectives, namely a *-autonomous category. Then, I will introduce polycategories where the connectives are defined through a universal properties. The equivalence between the two goes back to Cockett and Seely in 1997 although the version that I will present is slightly modified.
The third approach uses bifibred polycategories. There the connectives are interpreted by fibrational properties. This and it being equivalent to the previous perspective is new. Through some examples I will illustrate how it can be used to build more refined models from existing ones. Finally, it has been observed by Shulman that *-autonomous categories correspond to Frobenius pseudomonoid internal to the 2-polycategory of multivariable adjunctions. I will show how it is connected to the fibrational picture by a polycategorical Grothendieck correspondence.
If time permits I will discuss some subtleties concerning the aforementioned 2-polycategory that calls for a weak variant of the notion of 2-polycategory.
Quatre approches équivalentes pour les modèles de LL
Dans cet exposé je vais décrire quatre façons équivalentes d'assigner une sémantique à la logique linéaire, en me focalisant sur le fragment multiplicatif classique.
Tout d'abord, je rappellerai la perspective usuelle qui consiste à doter des catégories de structures supplémentaires pour interpréter les connecteurs, i.e. les catégories *-autonomes. Puis j'introduirai la notion de polycatégorie dans laquelle les connecteurs sont définis au travers de propriétés universelles. L'équivalence des deux notions a été démontrée par Cockett et Seely en 1997, si ce n'est que la version que je présenterai a été légèrement modifiée.
La troisième perspective utilise la notion de polycatégorie bifibrée. Les connecteurs y sont introduit au moyen de propriétés fibrationelles. Cette approche et le fait quelle est équivalente aux précédentes est nouvelle. J'illustrerai au travers d'exemples comment cela permet de définir de nouveaux modèles plus raffinés à partir de modèles existants.
Enfin, il a été observé par Shulman que les catégories *-autonomes correspondent aux pseudomonoïdes de Frobenius internes à la 2-polycatégorie des adjonctions à plusieurs variables. Je montrerai comment cela est liée à la perspective fibrationnelle au travers d'une correspondance de Grothendieck polycatégorielle.
Si le temps le permet, je discuterai plus en détails certaines subtilités à propos de cette 2-polycatégorie qui poussent à définir une version faible de la notion de 2-polycatégorie.
Semantics
Tuesday November 9, 2021, 10:30AM, Exposé à distance sur Galène – salle 3052 virtuelle
Thomas Ehrhard (CNRS, Université de Paris) Coherent Differentiation [Part 3]
Semantics
Tuesday November 2, 2021, 10:30AM, Exposé à distance sur Galène – salle 3052 virtuelle
Thomas Ehrhard (CNRS, Université de Paris) Coherent Differentiation [Part 2]
Semantics
Tuesday October 26, 2021, 10:30AM, Exposé à distance sur Galène – salle 3052 virtuelle
Thomas Ehrhard (CNRS, Université de Paris) Coherent Differentiation [Part 1]
Semantics
Tuesday October 19, 2021, 10:30AM, Salle 3052
Théo Winterhalter (Max Planck Institute Bochum (Allemagne)) SSProve: A foundational framework for modular cryptographic proofs in Coq
Semantics
Tuesday October 12, 2021, 10:30AM, Exposé à distance sur Galène – salle 3052 virtuelle
Tom Hirschowitz (CNRS, Université Savoie Mont Blanc) A categorical framework for congruence of applicative bisimilarity [Part Three]
This is joint work with Ambroise Lafont.
Semantics
Tuesday October 5, 2021, 10:30AM, Online talk at our Galène server: https://crocus.irif.fr:8443/group/gt-semantique
Tom Hirschowitz (CNRS, Université Savoie Mont Blanc) A categorical framework for congruence of applicative bisimilarity [Part Two]
This is joint work with Ambroise Lafont.
This is the second part of a series of two talks.
Semantics
Tuesday September 21, 2021, 11AM, Online talk at our Galène server: https://crocus.irif.fr:8443/group/gt-semantique
Tom Hirschowitz (CNRS, Université Savoie Mont Blanc) A categorical framework for congruence of applicative bisimilarity [Part one]
This is joint work with Ambroise Lafont.
This is the first part of a series of two online talks. The second talk will take place on October the 5th.
Semantics
Tuesday April 27, 2021, 10AM, Exposé à distance sur Galène – salle 3052 virtuelle
Soichiro Fujii (Research Institute in Mathematical Science (RIMS), Kyoto) Completeness and injectivity
Semantics
Tuesday December 15, 2020, 11:30AM, Exposé à distance sur Galène – https://crocus.irif.fr:8443/group/gt-semantique
Jean-Simon Lemay (University of Oxford (UK)) On the coalgebras of a differential category and how to construct coderelictions from coalgebra structure.
In this talk, we will take a look at the coalgebras of a differential category and explain how to construct coderelictions from coalgebra structure, which results in a new axiomatization of differential categories. This new axiomatization helps provide an alternative proof that free exponential modalities always come equipped with a unique codereliction, and thus every Lafont category with biproducts is a differential category. We will also explain how, under a mild limit condition, the coEilenberg-Moore category of differential category is in fact a tangent category! Tangent categories formalize the basis of differential calculus on smooth manifolds. Thus, the coalgebras of a differential category can be seen as generalized smooth manifolds, while the cofree coalgebras are interpreted as generalized Euclidean spaces.
This talk is based on and is an extension of a paper by Cockett, Lucyshyn-Wright, and Lemay: https://drops.dagstuhl.de/opus/volltexte/2020/11660/pdf/LIPIcs-CSL-2020-17.pdf
Deuxième exposé de la matinée 11:30 – 12:45
Semantics
Tuesday December 15, 2020, 10AM, Exposé à distance sur Galène – https://crocus.irif.fr:8443/group/gt-semantique
Paul Lessard (Macquarie University) Progress Towards a Practical Type Theory for Symmetric Monoidal Bicategories
In this talk I will:
-) motivate Shulman’s PTT and provide an introduction to that theory; and
-) describe progress towards a similar type theory for symmetric monoidal bi-categories.
In particular, in this second part:
+) I will compare the role played by nice presentations, PROPs, and signatures in the semantics of PTT to the role played by (generalized) 2- and 3-computads for (the globular operad for) quasi-strict symmetric monoidal bi-categories; and
+) introduce the basic judgements of our proposed syntax - along with their ‘sets with elements’ style interpretation
You will find more on Paul Lessard's work here: https://sites.google.com/view/paul-roy-lessard
Premier exposé de la matinée 10:00 – 11:15
Semantics
Tuesday March 3, 2020, 10:30AM, Salle 4033
Pierre Cagne (Université de Bergen (Norvège)) The symmetries of spheres in univalent foundations
Attention au changement de salle 4033 au lieu de la salle 3014 habituelle
Semantics
Tuesday January 28, 2020, 10:30AM, Salle 3052
Antti Kuusisto (University of Helsinki) A Turing-complete extension of first-order logic
Semantics
Wednesday January 22, 2020, 10:30AM, Salle 3014
John Bourke (Masaryk University (Brno)) Weak adjoint functor theorems and accessible infinity-cosmoi
Semantics
Tuesday January 7, 2020, 11AM, Salle 3052
Robin Piedeleu (University College London) Une approche graphique des systèmes concurrents
Il s'agit de travaux en collaboration avec Filippo Bonchi, Pawel Sobocinski et Fabio Zanasi.
GdT joint au groupe de travail ACS
Semantics
Tuesday December 17, 2019, 10:30AM, Salle 3052
Yannick Zakowski (Irisa/Inria) From representing recursive and impure programs in Coq to a modular formal semantics of LLVM IR
In this talk, we will focus on the design and implementation of Interaction Trees (ITrees), a general-purpose data-structure for representing in Coq potentially divergent, effectful, programs. ITrees are built out of uninterpreted events and their continuations. They support compositional construction of interpreters from event handlers, which give meaning to events by defining their semantics as monadic actions. They are expressive enough to represent impure and potentially nonterminating, mutually recursive computations in Coq. Finally, they give rise to a theory enabling equational reasoning, up to weak bisimulation, about ITrees and monadic computations built from them. In contrast to other approaches, ITrees are executable via code extraction.
ITrees are expressive enough to serve as a language of specification for most projects of the DeepSpec ecosystem, making them a sort of Franca Lingua for formal specification, and helping in connecting projects together. Furthermore, their ability to be extracted make them compatible with ambitions of liveness and two-sidedness.
In a second part of this talk, we will focus on how ITrees are used in one of the DeepSpec projects in particular: Vellvm. More specifically, we will give an account of the ongoing effort to use ITrees as a mean to define a modular formal semantics of LLVM IR.
Semantics
Tuesday December 3, 2019, 11:15AM, Salle 3052
Ivan Di Liberti (Masaryk University (Brno)) Topos theoretic approaches to formal model theory
Semantics
Tuesday December 3, 2019, 10AM, Salle 3052
Valentin Blot (INRIA, ENS Paris-Saclay) Extensional and Intensional Semantic Universes: A Denotational Model of Dependent Types
Semantics
Tuesday November 26, 2019, 10:30AM, Salle 3014
Vladimir Zamdzhiev (Tulane University) Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory
Semantics
Tuesday November 19, 2019, 10:30AM, Salle 3052
Fredrik Dahlqvist (University College London) A probabilistic approach to floating point arithmetic
Given an input distribution, the model requires the distribution of rounding errors. We show how to exactly compute this distribution for low precision arithmetic. For high precision arithmetic we derive a simple but surprisingly useful approximation. The model is then entirely compositional: given a numerical program written in a simple imperative programing language we can recursively compute the distribution of rounding errors at each step and propagate it through each program instruction. This is done by applying a formalism originaly developed by Kozen to understand the semantics of probabilistic programs, for example how probability distributions gets transformed by assignments or “if then else” statements.
Semantics
Tuesday October 8, 2019, 10:30AM, Salle 3052
Clovis Eberhart (National Institute of Informatics, Tokyo) History-Dependent Nominal μ-Calculus
Semantics
Tuesday July 2, 2019, 2PM, Salle 3052
Henning Basold (Leiden University) Guarded Recursion for Probabilistic Programming and Probabilistic Logic
In this talk, I will first show how a fibration can be extended, under mild conditions, to a fibration with guarded recursion. The abstract settings of fibrations allows the application of guarded recursion in various settings such as probabilistic programming and reasoning. We will see this in the second part of the talk in action, where we will devise a language for coinductive probabilistic processes based on guarded recursion that retains termination. The semantics of this language is obtained by applying the construction from the first part of the talk to quasi-Borel spaces. This gives an alternative language with guaranteed termination to the probabilistic language with unrestricted recursion recently given by Vákár et al. (POPL'19).
Semantics
Tuesday April 2, 2019, 10:30AM, Salle 3052
Jérémy Dubut (NII, Tokyo) Categorical approaches to bisimilarity
Semantics
Monday March 18, 2019, 2PM, Salle 3052
Michel Schellekens (University College Cork) Expedient Algebra: Duality and Entropy Conservation
We show that EXP-computations, made reversible through history-keeping, act as closed systems in which entropy is conserved. Thus modularity of timing is linked to entropy conservation of data flow, sharpening traditional entropy preservation guaranteed by the second law of thermodynamics for reversible systems. This type of conservation typically holds for the case of energy, but not for entropy. A salient point is that for algorithms satisfying distribution control, entropy is neither created nor destroyed, merely transferred from one form, i.e. quantitative entropy, to another, i.e. positional entropy.
We establish the Entropy Conservation Laws ECL-1 and ECL-2. ECL-1 expresses the inverse proportionality of positional and quantitative entropy for distributions over series-parallel orders and their duals. ECL-2, a computational version of entropy conservation, expresses that order established by the expedient product (with history) on labels is proportionally destroyed on indices by a shadow transformation in the dual space. The laws shed new light on the properties of algorithms for which distribution control, and hence modular timing, is guaranteed.
Semantics
Tuesday February 26, 2019, 10:30AM, Salle 3052
Eric Finster (INRIA) L'algèbre universelle supérieur dans la théorie des types dependants
Semantics
Friday February 1, 2019, 10:30AM, Salle 3052
Nobuko Yoshida (Imperial College London) Behavioural Type-Based Static Verification Framework for Go
POPL'17 Fencing off go: liveness and safety for channel-based programming ICSE'18 A Static Verification Framework for Message Passing in Go using Behavioural Types POPL'19 Distributed Programming Using Role Parametric Session Types in Go.
Go is a production-level statically typed programming language whose design features explicit message-passing primitives and lightweight threads, enabling (and encouraging) programmers to develop concurrent systems where components interact through communication more so than by lock-based shared memory concurrency. Go can detect global deadlocks at runtime, but does not provide any compile-time protection against all too common communication mismatches and partial deadlocks. We present a static verification framework for liveness and safety in Go programs, able to detect communication errors and deadlocks by model checking. Our toolchain infers from a Go program a faithful representation of its communication patterns as behavioral types, where the types are model checked for liveness and safety. We also present a recent code generation for Go.
Semantics
Tuesday January 29, 2019, 11AM, Salle 3052
Giulio Guerrieri (Università di Bologna) Types by Need (joint work with Beniamino Accattoli and Maico Leberle)
Semantics
Monday January 28, 2019, 11AM, Salle 3052
Fredrik Dahlqvist (UCL - Department of Computer Science) Semantics of higher-order probabilistic programs with conditioning
Semantics
Tuesday January 8, 2019, 10:30AM, Salle 3052
Jean Bénabou Les multiples facettes de la « construction de Grothendieck »
Semantics
Tuesday December 4, 2018, 11:20AM, Amphi Turing, Bâtiment Sophie Germain
Eric Degiuli (ENS) Random Language Model: a path to principled complexity
Semantics
Monday November 26, 2018, 10:45AM, Salle 3052
Hendrik Maarand (Tallinn University of Technology) Derivatives of Existentially Regular Trace Languages
Semantics
Tuesday November 6, 2018, 10:30AM, Salle 3052
Rick Blute (University of Ottawa) Finiteness spaces and generalized power series
In the present work, we take morphisms to be partial functions preserving the finitary structure rather than relations. The resulting category is symmetric monoidal closed, complete and cocomplete. Any pair of an internal monoid in this category and a ring induces a ring of generalized power series by an extension of the Ribenboim construction based on Ehrhard’s notion of linearization of a finiteness space. We thus further generalize Ribenboim’s constructions. We give several examples of rings which arise from this construction, including the ring of Puiseux series and the ring of formal power series generated by a free monoid. This is joint work with Cockett, Jacqmin and Scott.
We'll also present some results of Beauvais-Fiesthauer, Dewan and Drummond on the embedding of topological spaces into finiteness spaces and discuss how this might be of use in the analysis of etale groupoids and their C*-algebras.
Semantics
Tuesday October 16, 2018, 10:30AM, Salle 3052
Thomas Ehrhard (IRIF) Une remarque sur les espaces cohérents probabilistes et la distance opérationnelle entre les programmes
Semantics
Tuesday September 18, 2018, 10AM, Salle 3052
Paul-André Mellies (IRIF) Template games: a model of differential linear logic
Semantics
Tuesday September 18, 2018, 11AM, Salle 3052
Jean-Simon Lemay (University of Oxford) Differential Categories Revisited
Les catégories différentielles ont été introduites afin de fournir une sémantique catégorique minime pour la logique linéaire différentielle. Cependant, il existe trois approches d'axiomatiser la dérivée par les “deriving transformations”, “coderelictions”, “creation maps” - considérés pendant longtemps comme des notions distinctes. Récemment, avec Blute, Cockett et Seely, nous avons revisité les axiomes d’une catégorie différentielle et démontré que pour les modèles catégoriques de logique linéaire différentielle, les trois approches sont équivalentes. Il y a donc qu’une seule notion de différentielle.
Semantics
Tuesday May 15, 2018, 11AM, Salle 3052
Tarmo Uustalu (Reykjavik University and Tallinn University of Technology) Nested and labelled sequent calculi for bi-intuitionistic propositional logic
This is joint work with Luís Pinto (Universidade do Minho).
Semantics
Tuesday February 20, 2018, 11AM, Salle 3052
Shin-Ya Katsumata (National Institute of Informatics, Tokyo) Codensity liftings of monads
(Joint work with Tetsuya Sato; presented in CALCO 2015)
Semantics
Wednesday January 17, 2018, 10AM, Salle 3052
Luc Pellissier (ENS Lyon) Intersection Types, Linear Approximations and the Grothendieck construction
Based on a joint work with Damiano Mazza and Pierre Vial.
Semantics
Wednesday January 17, 2018, 11AM, Salle 3052
Soichiro Fujii (National Institute of Informatics (NII, Tokyo)) A unified framework for notions of algebraic theory
First I will explain how each notion of algebraic theory can be identified with a certain monoidal category, in such a way that theories correspond to monoids. Then I will introduce a categorical structure underlying the definition of models of theories. In specific examples, it often arises in the form of oplax action or enrichment. Finally I will uniformly characterize categories of models for various notions of algebraic theory, by a double-categorical universal property in the pseudo-double category of profunctors.
Semantics
Tuesday December 5, 2017, 10:30AM, Salle 3052
Kenji Maillard (INRIA et ENS) F* : Dijkstra-monads at work
Semantics
Wednesday November 29, 2017, 10:30AM, Salle 3052
Simona Paoli (University of Leicester) n-Fold models of weak n-categories
Semantics
Tuesday November 21, 2017, 10:30AM, Salle 3052
John Baez (UCLA Riverside) Compositionality in Network Theory
Semantics
Tuesday November 7, 2017, 10:30AM, Salle 3052
Tobias Heindel (Université de Leipzig) Formal language theory beyond trees and forests
Semantics
Tuesday October 31, 2017, 10:30AM, Salle 3052
Nicolas Behr (IRIF) Combinatorial Hopf algebras and rewriting: the rule algebra framework
Semantics
Thursday August 31, 2017, 2PM, Salle 3052
Zoran Petric (Mathematical Institute, Academy of Sciences, Belgrade) Frobenius spheres
The talk is based on the paper “Spheres as Frobenius objects”, co-authored with Djordje Baralic and Sonja Telebakovic, which is available at arxiv.
Semantics
Tuesday July 18, 2017, 2PM, Salle 3052
Noam Zeilberger (University of Birmingham) Some bridges between lambda calculus and graphs on surfaces
Semantics
Friday June 30, 2017, 4:30PM, Salle 3052
Niccolò Veltri (Laboratory of Software Science, Tallinn) Partiality and container monads
Semantics
Tuesday June 13, 2017, 11AM, Salle 2012
Elaine Pimentel (Universidade Federal do Rio Grande do Norte (Brasil)) A uniform framework for substructural logics with modalities
This is a joint work with Carlos Olarte and Björn Lellmann
ATTENTION A LA SALLE INHABITUELLE (2012 Sophie Germain)
Semantics
Tuesday February 28, 2017, 11AM, Salle 3052
Ran Chen (Inria) Strongly Connected Components in graphs, formal proof of Tarjan1972 algorithm
We present a human readable and rather intuitive formal proof for the classical Tarjan-1972 algorithms for finding strongly connected components in directed graphs. Tarjan’s algorithm consists in an efficient one-pass depth-first search traversal in graphs which traces the bases of strongly connected components. We describe the algorithm in a functional programming style with abstract values for vertices in graphs, with functions between vertices and their successors, and with data types such that lists (for representing immutable stacks) and sets. We use the Why3 system and the Why3-logic to express these proofs and fully check them by computer.
Semantics
Tuesday January 24, 2017, 11AM, Salle 3052
Arnaud Spiwack (Tweag I/O) Retrofitting linear types
I had always had the belief that to add linear types to a language was a rather intrusive procedure and that a language with linear types would basically be an entirely new language. The Rust language is a case in point: it has a linear-like type system, but it's a very different language from your run-of-the-mill functional language.
This turns out not to be the case: this talk presents a way to extend a functional programming language. We are targeting Haskell but there is little specific to Haskell in this presentation. I will focus mostly on the type system and how it can be generalised: among other things the type system extends to dependent types.
Semantics
Friday January 13, 2017, 2PM, Salle 3052
Tarmo Uustalu (Tallinn University of Technology) Interaction morphisms
Tarmo Uustalu, Tallinn U of Technology
I will propose interaction morphisms as a means to specify how an effectful computation is to be run, provided a state in a context. An interaction morphism of a monad T and a comonad D is a family of maps T X x D Y → X x Y natural in X and Y and subject to some equations. Interaction morphisms turn out to be a natural concept with a number of neat properties. In particular, interaction morphisms are the same as monoids in a certain monoidal category; interaction morphisms of T and D are in a bijective correspondence with carrier-preserving functors between the categories of coalgebras of D and stateful runners of T (monad morphisms from T to state monads); they are also in a bijective correspondence with monad morphisms from T to a monad induced in a certain way by D.
This is joint work with Shin-ya Katsumata (University of Kyoto).
Semantics
Tuesday January 10, 2017, 11AM, Salle 3052
Fanny He (Université de Bath, UK) The atomic lambda-mu-calculus
One approach for the former is to gain more control over duplication and deletion of terms, by introducing sharings of common subterms inside a lambda-term, similarly to optimal reduction graphs. This has been done by Gundersen, Heijltjes and Parigot, via the atomic lambda-calculus, a calculus extending the lambda-calculus with explicit sharings, and allowing duplications on individual constructors. It enjoys full-laziness, avoiding unnecessary duplications of constant expressions.
For the latter, an extension of the lambda-calculus linking classical formulas to control flow constructs via Curry-Howard correspondence, the lambda-mu-calculus, was developed by Parigot. New operators in the lambda-mu-calculus correspond to continuations, representing the remaining work in a program.
Can we combine sharing with control operators and thus obtain another extension of the lambda-calculus satisfying full-laziness and featuring control operators? A first challenge is to combine explicit sharings or substitutions with mu-reduction and substitution, and we introduce a right-associative application as in Saurin-Gaboardi's lambda-mu-calculus with streams to overcome this challenge. Another difficulty is to adapt the type system for lambda-mu with multiple conclusions, distinguishing one main conclusion (with a meta-disjunction connective), to a type system in which each rule can be applied to atoms (which corresponds to duplications on individual term constructors), and where no distinction is made between object and meta-level. I will present how to combine these two type systems in the simplest possible way.
I will present the atomic lambda-mu-calculus, which aims to naturally extend the two calculi presented above, giving the simplest type system combining and preserving their properties.
Semantics
Wednesday December 21, 2016, 11AM, Salle 3052
Victoria Lebed (Trinity College, Dublin) Que savent les tresses sur les tableaux de Young ?
Semantics
Tuesday December 20, 2016, 11AM, Salle 3052
Clovis Eberhart (LAMA, Chambéry) Séquences justifiées et diagrammes de cordes : deux approches de la sémantique de jeux concurrents
Semantics
Tuesday December 6, 2016, 11AM, Salle 3052
Yann Régis-Gianas (IRIF) Explaining Program Differences Using Oracles
We present a formal framework to characterize differences between deterministic programs in terms of their small-step semantics. This language-agnostic framework defines the notion of /difference languages/ in which /oracles/—programs that relate small-step executions of pairs of program written in a same language—can be written, reasoned about and composed.
We illustrate this framework by instantiating it on a toy imperative language and by presenting several /difference languages/ ranging from trivial equivalence-preserving syntactic transformations to characterized semantic differences. Through those examples, we will present the basis of our framework, show how to use it to relate syntactic changes with their effect on semantics, how one can abstract away from the small-step semantics presentation, and discuss the composability of oracles.
This is joint work with Thibaut Girka (IRIF - MERCE) and David Mentré (MERCE)
Semantics
Tuesday November 15, 2016, 11AM, Salle 3052
José Espírito Santo (University of Minho) Call-by-name, call-by-value and intuitionistic logic
Semantics
Tuesday November 8, 2016, 11AM, Salle 3052
Gustavo Petri (IRIF) Safe and Scalable Cloud Programming
Semantics
Tuesday October 18, 2016, 10:30AM, Salle 3052
Pablo Barenbaum (Université de Buenos Aires - CONICET) Finite Family Developments for the Linear Substitution Calculus
Joint work with Eduardo Bonelli.
Semantics
Tuesday October 18, 2016, 11:30AM, Salle 3052
Masahito Hasegawa (Research Institute in Mathematical Sciences (RIMS)) Traced star-autonomous categories are compact closed
We also discuss what would happen if we remove symmetry, thus the following question: is there a non-symmetric star-autonomous category with a (suitably generalized) trace which is not pivotal? Our recent attempt suggests that the answer is again no, but the situation is much subtler than the symmetric case.
The result on the symmetric case is a joint work with Tamas Hajgato.
Semantics
Tuesday July 5, 2016, 11AM, Salle 3052
Shane Mansfield (IRIF) Empirical Models and Contextuality
Semantics
Tuesday June 7, 2016, 11AM, Salle 3052
Thomas Leventis (I2M Marseille) Probabilistic lambda-theories
In this talk we will recover this notion of presentation through equalities in the probabilistic lambda-calculus. We will show how some usual notions can be translated in the probabilistic world. In particular we will define a notion of probabilistic Böhm tree, and show a separability result. This will implies that just like in the deterministic setting the Böhm tree equality is the same as the observational equivalence.
Attention, mardi 7 double séance
Semantics
Tuesday June 7, 2016, 10AM, Salle 3052
Antoine Allioux (IRIF) Krivine machine and Taylor expansion in a non-uniform setting
We generalize this resource-driven Krivine machine to the case of the algebraic $\lambda$-calculus. The latter is an extension of the pure $\lambda$-calculus allowing for the linear combination of $\lambda$-terms with coefficients taken from a semiring. Our machine associates a $\lambda$-term $M$ and a resource annotation $t$ with a scalar $\alpha$ in the semiring describing some quantitative properties of the linear head reduction of $M$.
In the particular case of non-negative real numbers and of algebraic terms $M$ representing probability distributions, the coefficient $\alpha$ gives the probability that the linear head reduction actually uses exactly the resources annotated by $t$. In the general case, we prove that the coefficient $\alpha$ can be recovered from the coefficient of $t$ in the Taylor expansion of $M$ and from the normal form of $t$.
Attention, mardi 7 double séance !
Semantics
Tuesday May 17, 2016, 11AM, Salle 3052
Daniel Leivant (Indiana University Bloomington) Syntax directed coproofs for Propositional Dynamic Logic
Contrary to proofs, which are generated inductively top-down, coproofs are generated coinductively bottom-up, and may have infinite branches. However, our inference rules allow this only via state-changes, and as a result are sound.
We also prove the semantic completeness of our formalism, and apply it to obtain new interpolation theorems for PDL.
Semantics
Thursday April 7, 2016, 4PM, Salle 3052
Flavien Breuvart (INRIA Focus (Université de Bologna, IT)) L'encodage probabiliste: vers une formalisation systématique des langages probabilistes, déterministiques et potentiellement divergents.
Attention au jour et horaire inhabituels !
Semantics
Tuesday March 29, 2016, 10:30AM, Salle 3052
Andrew Polonsky (IRIF) Interpreting infinite terms
\f.f(Ω), \f.f^2(Ω), \f.f^3(Ω), …, \f.f^n(Ω), ….
The infinite term \f.f(f(f…)) is the limit of the above sequence, and in the infinitary lambda calculus all fpcs reduce to this term, which is an infinitary normal form. It would seem natural to extend the interpretation function to cover infinitary terms as well, however, naive attempts to do this fail. The problem is already present in the first-order case: finite terms over a signature ∑ can be interpreted by means of the initial semantics – where the free algebra of terms admits a canonical homomorphism to any other ∑-algebra. However, the infinite terms are elements of the cofinal coalgebra, which universal property concerns maps INTO the algebra, rather than out of it. We are thus faced with a “koan”:
While we shall not provide a (co)final solution to this koan, we will offer germs of some possible approaches, with the hope of starting a discussion that could follow this short talk.
Attention à l'horaire inhabituelle