Checking Linearizability: Theoretical Limits

Constantin Enea
IRIF, Univ Paris Diderot - Paris 7
Concurrent Data Structures

T1
Push(0)
Pop(1)

...

Tn
Push(1)
Pop(0)
Empty(true)

Low Level Representation

Methods
Implementation

Push

Pop

Empty
Abstract (Client) View

- Operations are considered to be atomic
- Thread executions are interleaved
- Executions satisfy sequential specifications

```
Push(1)    Push(0)    Pop(0)    Pop(1)    Empty(true)
```
Abstract (Client) View

- Operations are considered to be atomic
- Thread executions are interleaved
- Executions satisfy sequential specifications

```
Push(1)  Push(0)  Pop(0)  Pop(1)  Empty(true)
```

A “simple” implementation:

- Take a sequential implementation
- Lock at the beginning, unlock at the end of each method
- + Reference Implementation: simple to understand
- - Low performances in case of contention
Efficient Concurrent Implementations

• Avoid the use of locks
• Maximise parallelisation of operations

\[\text{Push}(0) \quad \text{Pop}(1)\]
\[\text{Push}(1) \quad \text{Pop}(0) \quad \text{Empty}(\text{true})\]

• Check for interferences, and retry
• Use lower level synchronisation primitives (CAS)
Efficient Concurrent Implementations

- Avoid the use of locks
- Maximise parallelisation of operations
- Check for interferences, and retry
- Use lower level synchronisation primitives (CAS)

- \[\text{Push}(0)\] \[\text{Pop}(1)\]
- \[\text{Push}(1)\] \[\text{Pop}(0)\] \[\text{Empty}(\text{true})\]

- \[\Rightarrow\text{ Complex behaviours!}\]
- \[\Rightarrow\text{ Need to ensure the atomic view to the user!}\]
Linearizability

[Herlihy, Wing, 1990]

- Reorder call/return events, while preserving returns → calls
- Find “linearization points” within execution time intervals
- s.t. match some sequential execution

Valid sequence in the sequential specification
Checking Linearizability: Complexity (finite-state implementations)

Bounded Nb. ofThreads:

- EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]
- Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Bouajjani et al., 2013: Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza: Verifying Concurrent Programs against Sequential Specifications. ESOP 2013

Hamza 2015: Jad Hamza: On the Complexity of Linearizability. NETYS 2015
Checking Linearizability: Complexity (finite-state implementations)

Bounded Nb. of Threads:
- EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:
- Undecidable [Bouajjani et al., 2013]
- Decidable with “fixed linearization points” [Bouajjani et al. 2013]
Concurrent Languages

• Concurrent language = (Σ, D)
 • Σ an alphabet
 • $D \subseteq \Sigma \times \Sigma$
 (Mazurkiewicz traces - D is symmetric)

• a and b are called independent when $(a, b) \not\in D$

• \Rightarrow_D a relation that permutes independent symbols:
 • for all $(a, b) \not\in D$, $\sigma \, ab \, \sigma' \Rightarrow_D \sigma' \, ba \, \sigma$ (and trans. closure)

• $\text{cl}_D(L) = \text{all strings } \sigma' \text{ such that } \sigma' \Rightarrow_D \sigma \text{ for some } \sigma \in L$

• Ex: $\Sigma = \{a, b\}$, $L = (ab)^*$, $D = \emptyset$ and $D = \{(b, a)\}$
Specifications, Implementations

- Specification = a language over an alphabet containing symbols $p: \text{m}(a) \Rightarrow b$

- Example: bounded-value register, bounded size queue

- Implementation = a language over an alphabet containing symbols $p: \text{call m}(a)$ and $p: \text{ret m}(a) \Rightarrow b$ where returns “match” previous calls
Example: Treiber Stack

class Node {
 Node tl;
 int val;
} TOP;

top NodePtr {
 Node val;
 int val;
} TOP;

void push(int e) {
 Node y, n;
 y = new();
 y->val = e;
 while(true) {
 n = TOP->val;
 y->tl = n;
 if (cas(TOP->val, n, y))
 break;
 }
}

int pop() {
 Node y,z;
 while(true) {
 y = TOP->val;
 if (y==0) return EMPTY;
 z = y->tl;
 if (cas(TOP->val, y, z))
 break;
 }
 return y->val;
}

What is the specification?
Defining Linearizability

- Linearizability:
 - \(\text{lin} = \bigcup_{p} (\Sigma_{p} \cup (\Sigma_{\text{ret}} \times \Sigma_{\text{call}})) \)
 - an execution \(\sigma \) is linearizable iff \(\sigma \in \text{cl}_{\text{lin}}(\text{Spec}^{*}) \)
 - Impl is linearizable iff \(\text{Impl} \subseteq \text{cl}_{\text{lin}}(\text{Spec}^{*}) \)
 - this inclusion check is undecidable in general (for regular languages)
Defining Linearizability

• Linearizability:
 • an execution σ is linearizable iff there exists a sequence τ that contains σ and linearization points (symbols $p:m(a)\rightarrow b$) such that:
 • every projection over “actions” of the same process is “sequential”
 • the projection over linearization point actions is included in the specification
Deciding Linearizability

- Linearizability:
 - $\text{lin} = \bigcup_p (\Sigma_p \cup (\Sigma_{\text{ret}} \times \Sigma_{\text{call}}))$
 - an execution σ is linearizable iff $\sigma \in \text{cl}_{\text{lin}}(\text{Spec}^*)$
 - Impl is linearizable iff $\text{Impl} \subseteq \text{cl}_{\text{lin}}(\text{Spec}^*)$
 - this inclusion check is undecidable in general (for regular languages)
- $\text{cl}_{\text{lin}}(\text{Spec}^*) = (\|_p L_{\text{lin-points}}(p) \| \text{ Spec}) \downarrow (\Sigma_{\text{call}} \cup \Sigma_{\text{ret}})$
Problem 2 (Letter Insertion). Input: A set of insertable letters $A = \{a_1, \ldots, a_l\}$. An NFA N over an alphabet $\Gamma \cup A$.

Question: For all words $w \in \Gamma^*$, does there exist a decomposition $w = w_0 \cdots w_l$, and a permutation p of $\{1, \ldots, l\}$, such that $w_0 a_p[1] w_1 \cdots a_p[l] w_l$ is accepted by N?
Define k, the number of threads, to be $l + 2$. We will define a library Lib composed of

- methods M_1, \ldots, M_l, one for each letter of A
- methods M_γ, one for each letter of Γ
- a method M_{Tick}.

The specification S_N is defined as the set of words w over the alphabet
\{M_1, \ldots, M_l\} \cup \{M_{\text{Tick}}\} \cup \{M_\gamma | \gamma \in \Gamma\}$ such that one the following condition holds:

- w contains 0 letter M_{Tick}, or more than 1, or
- for a letter M_i, $i \in \{1, \ldots, l\}$, w contains 0 such letter, or more than 1, or
- when projecting over the letters M_γ, $\gamma \in \Gamma$ and M_i, $i \in \{1, \ldots, l\}$, w is in N_M, where N_M is N where each letter γ is replaced by the letter M_γ, and where each letter a_i is replaced by the letter M_i.

Fig. 4. Description of $M_\gamma, \gamma \in \Gamma$

Fig. 5. Description of M_1, \ldots, M_l

Fig. 6. Description of M_{Tick}
EXPSPACE-hardness

1. there exists a word w in Γ^*, such that there is no way to insert the letters from A in order to obtain a word accepted by N
2. there exists an execution of Lib with k threads which is not linearizable w.r.t. S_N
EXPSPACE-hardness

Fig. 7. Non-linearizable execution corresponding to a word $\gamma_1 \ldots \gamma_m$ in which we cannot insert the letters from $A = \{a_1, \ldots, a_l\}$ to make it accepted by N. The points represent steps in the automata.
Checking Linearizability: Complexity (finite-state implementations)

Bounded Nb. of Threads:
- EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:
- Undecidable [Bouajjani et al., 2013]
- Decidable with “fixed linearization points” [Bouajjani et al. 2013]
Undecidability

• Reduction from reachability in counter machines
• Given a counter machine A, we construct a library L_A and a specification S_A such that L_A is not linearizable w.r.t. S_A iff A reaches the target state.
• L_A = transition methods $T[t]$, increments $I[c_i]$, decrements $D[c_i]$ and zero-tests $Z[c_i]$
• L_A allows only valid sequences of transitions.
• S_A allows executions which don’t reach the target state, or which erroneously pass some zero-test.

 – it doesn’t contain $M[q_f]$,
 – it ends in $M[q_f]$ and it contains a prefix of the form $$(M_{\text{inc}}[i]M_{\text{dec}}[i])^*(M_{\text{inc}}[i]^+ + M_{\text{dec}}[i]^+)M_{\text{zero}}[i]$$
 – it ends in M_f and it contains a subword of the form $M_{\text{zero}}[i](M_{\text{inc}}[i]M_{\text{dec}}[i])^*(M_{\text{inc}}[i]^+ + M_{\text{dec}}[i]^+)M_{\text{zero}}[i]$.

Fig. 9. Simulating transitions of A. Program fragments on the same line (resp., different lines) are executed by the same thread (resp., different threads). The abscissa represents time.

Defining a specification for L_A:

The specification S_A is defined such that all the executions of $L_A\{C\}$, which don’t correctly simulate the counter machine or which simulate runs of the counter machine not reaching the state q_f, are S_A-linearizable. Note that an execution of $L_A\{C\}$ doesn’t correctly simulate a run of A only because of zero-test transitions.

The specification S_A is a prefix-closed regular language that constrains only the order between calls to the methods $M_{\text{inc}}[i]$, $M_{\text{dec}}[i]$, $M_{\text{zero}}[i]$, for any $i \in \mathbb{N}$. Let $\mathfrak{I}_i = \{M_{\text{inc}}[i] \rightarrow M_{\text{dec}}[i] \rightarrow M_{\text{zero}}[i] \rightarrow M[q_f]\}$, for any $i \in \mathbb{N}$. Then, a word over the alphabet containing all the method names in L_A belongs to S_A if there exists $i \in \mathbb{N}$ such that the projection of the word on the alphabet \mathfrak{I}_i satisfies one of the following constraints:

– it doesn’t contain $M[q_f]$,
– it ends in $M[q_f]$ and it contains a prefix of the form $$(M_{\text{inc}}[i]M_{\text{dec}}[i])^*(M_{\text{inc}}[i]^+ + M_{\text{dec}}[i]^+)M_{\text{zero}}[i]$$
– it ends in M_f and it contains a subword of the form $M_{\text{zero}}[i](M_{\text{inc}}[i]M_{\text{dec}}[i])^*(M_{\text{inc}}[i]^+ + M_{\text{dec}}[i]^+)M_{\text{zero}}[i]$.
Undecidability

1. A sequence \(t_1 t_2 \ldots t_i \) of \(A \)-transitions is modeled by a pairwise-overlapping sequence of \(T[t_1] \cdot T[t_2] \cdots T[t_i] \) operations.
2. Each \(T[t] \)-operation has a corresponding \(I[c_i] \), \(D[c_i] \), or \(Z[c_i] \) operation, depending on whether \(t \) is, resp., an increment, decrement, or zero-test transition with counter \(c_i \).
3. Each \(I[c_i] \) operation has a corresponding \(D[c_i] \) operation.
4. For each counter \(c_i \), all \(I[c_i] \) and \(D[c_i] \) between \(Z[c_i] \) operations overlap.
5. For each counter \(c_i \), no \(I[c_i] \) nor \(D[c_i] \) operations overlap with a \(Z[c_i] \) operation.
6. The number of \(I[c_i] \) operations between two \(Z[c_i] \) operations matches the number of \(D[c_i] \) operations.
Undecidability

- a T/T signal between T[*] operations
- for each counter c, a T/I, T/D, T/Z between T[*] operations and, resp., I[c_i], D[c_i] and Z[c_i] operations
- an I/D signal between I[c_i] and D[c_i] operations
- a T/C signal between T[t] operations and I[c_i], D[c_i] operations, for zero-testing transitions t
Undecidability

The trickier part of our proof is indeed ensuring Properties 5 and 6. There we leverage Property 4: when all I\[c_i\] and D\[c_i\] operations between two Z\[c_i\] operations overlap, every permutation of them, including those alternating between I\[c_i\] and D\[c_i\] operations, is strict, i.e., is permitted by the definition of linearizability. Our specification \(S_A \) takes advantage of this in order to match the unbounded number of I\[c_i\] and D\[c_i\] operations using only bounded memory.

Lemma 5.

The specification \(S_A \) accepting all sequences which either do not end with a transition to the target state, or in which the number of alternating I\[c_i\] and D\[c_i\] operations between two Z\[c_i\] operations are unequal, is regular.

Lemma 5 gives a way to ensure Properties 5 and 6, since any trace which is \(S_A \)-linearizable either does not encode an execution to \(A \)'s target state, or respects Property 5 while violating Property 6—i.e., the number of increments and decrements between zero-tests does not match—or violates Property 5: in the latter case, where some I\[c_i\] or D\[c_i\] operation \(\checkmark_1 \) overlaps with an Z\[c_i\] operation \(\checkmark_2 \), \(\checkmark_1 \) can always be commuted over \(\checkmark_2 \) to ensure that the number of I\[c_i\] and D\[c_i\] operations does not match in some interval between Z\[c_i\] operations. Thus any trace which is not \(S_A \)-linearizable must respect both Properties 5 and 6. It follows that any trace of \(L_A \) which is not \(S_A \)-linearizable guarantees Properties 1–6, and ultimately corresponds to a valid execution of \(A \), and visa versa, thus reducing counter machine state-reachability to \(S_A \)-linearizability.

Theorem 3.

The linearizability problem for unbounded concurrent systems with regular specifications is undecidable.
Undecidability

1 var q \in Q: T
2 var req[U]: T
3 var ack[U]: T
4 var dec[i \in \mathbb{N} : i < d]: T
5 var zero[i \in \mathbb{N} : i < d]: B
6
7 // for each transition \langle q, n, q' \rangle
8 method M[q, n, q'](i)
9 atomic
10 wait(q);
11 signal(req[n]);
12 atomic
13 wait(ack[n]);
14 signal(q');
15 return ()
16
17 // for each transition \langle q, i, q' \rangle
18 method M[q, i, q'](i)
19 atomic
20 wait(q);
21 zero[i] := true;
22 atomic
23 if !zero[i] then
24 signal(q');
25 return ()
26
27 // for each final state q_f
28 method M[q_f] ()
29 wait(q_f);
30 return
31 method M_inc[i] ()
32 atomic
33 if !zero[i] then
34 wait(req[u_i]);
35 signal(ack[u_i]);
36 signal(dec[i])
37 assume zero[i];
38 return ()
39
40 method M_dec[i] ()
41 atomic
42 if !zero[i] then
43 wait(dec[i]);
44 atomic
45 wait(req[-u_i]);
46 signal(ack[-u_i]);
47 assume zero[i];
48 return ()
49
50 method M_zero[i] ()
51 atomic
52 if zero[i] then
53 zero[i] := false;
54 return ()
Checking Linearizability: Complexity (finite-state implementations)

Bounded Nb. of Threads:
- EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:
- Undecidable [Bouajjani et al., 2013]
- Decidable with “fixed linearization points” [Bouajjani et al. 2013]
Libraries

A method is a finite automaton $M = \langle Q, \Sigma, I, F, \rightarrow \rangle$ with labeled transitions $\langle m_1, v_1 \rangle \xrightarrow{a} \langle m_2, v_2 \rangle$ between method-local states $m_1, m_2 \in Q$ paired with finite-domain shared-state valuations $v_1, v_2 \in V$. The initial and final states $I, F \subseteq Q$ represent the method-local states passed to, and returned from, M.

A client of a library L is a finite automaton $C = \langle Q, \Sigma, \ell_0, \rightarrow \rangle$ with initial state $\ell_0 \in Q$ and transitions $\rightarrow \subseteq Q \times \Sigma \times Q$ labeled by the alphabet $\Sigma = \{M(m_0, m_f) : M \in L, m_0, m_f \in Q_M\}$ of library method calls

most general client $C^* = \langle Q, \Sigma, \ell_0, \rightarrow \rangle$ of a library L nondeterministically calls L’s methods in any order: $Q = \{\ell_0\}$ and $\rightarrow = Q \times \Sigma \times Q$.
Libraries

A configuration \(c = \langle v, u \rangle \) of \(L[C] \) is a shared memory valuation \(v \in V \), along with a map \(u \) mapping each thread \(t \in \mathbb{N} \) to a tuple \(u(t) = \langle \ell, m_0, m \rangle \), composed of a client-local state \(\ell \in Q_C \), along with initial and current method states \(m_0, m \in Q_L \cup \{\bot\} \); \(m_0 = m = \bot \) when thread \(t \) is not executing a library

\[
\begin{align*}
\text{INTERNAL} & \quad u_1(t) = \langle \ell, m_0, m_1 \rangle \\
& \quad \langle m_1, v_1 \rangle \xrightarrow{a} \langle m_2, v_2 \rangle \\
& \quad u_2 = u_1(t \mapsto \langle \ell, m_0, m_2 \rangle) \\
& \quad \langle v, u_1 \rangle \xrightarrow{(\text{a}, t)} \langle v_2, u_2 \rangle \\
\end{align*}
\]

\[
\begin{align*}
\text{CALL} & \quad u_1(t) = \langle \ell_1, \bot, \bot \rangle \\
& \quad m_0 \in I_M \quad \ell_1 \xrightarrow{M(m_0, m_f)} \ell_2 \\
& \quad u_2 = u_1(t \mapsto \langle \ell_1, m_0, m_0 \rangle) \\
& \quad \langle v, u_1 \rangle \xrightarrow{\text{call}(M,m_0,t)} \langle v, u_2 \rangle \\
\end{align*}
\]

\[
\begin{align*}
\text{RETURN} & \quad u_1(t) = \langle \ell_1, m_0, m_f \rangle \\
& \quad m_f \in F_M \quad \ell_1 \xrightarrow{M(m_0, m_f)} \ell_2 \\
& \quad u_2 = u_1(t \mapsto \langle \ell_2, \bot, \bot \rangle) \\
& \quad \langle v, u_1 \rangle \xrightarrow{\text{ret}(M,m_f,t)} \langle v, u_2 \rangle \\
\end{align*}
\]

Fig. 1. The transition relation \(\rightarrow_{L[C]} \) for the library-client composition \(L[C] \).
class Node {
 Node tl;
 int val;
}
class NodePtr {
 Node val;
 int val;
} TOP;

void push(int e) {
 Node y, n;
 y = new();
 n = TOP->val;
 y->val = e;
 while(true) {
 n = TOP->val;
 y->tl = n;
 if (cas(TOP->val, n, y))
 break;
 }
}

int pop() {
 Node y,z;
 while(true) {
 y = TOP->val;
 if (y==0) return EMPTY;
 z = y->tl;
 if (cas(TOP->val, y, z))
 break;
 }
 return y->val;
}
VASS model

We associate to each concurrent system $L[C]$ a canonical VASS,\(^2\) denoted $A_{L[C]}$, whose states are the set of shared-memory valuations, and whose vector components count the number of threads in each thread-local state; a transition of $A_{L[C]}$ from $\langle v_1, n_1 \rangle$ to $\langle v_2, n_2 \rangle$ updates the shared-memory valuation from v_1 to v_2 and the local state of some thread t from $u_1(t)$ to $u_2(t)$ by decrementing the $u_1(t)$-component of n_1, and incrementing the $u_2(t)$-component, to derive n_2.
Specifications

A specification S of a library L is a language over the specification alphabet

$$\Sigma_S \overset{\text{def}}{=} \{ M[m_0, m_f] : M \in L, m_0, m_f \in Q_M \}.$$

Definition 2 (Linearizability [20]). A trace τ is S-linearizable when there exists a completion\(^4\) π of a strict, serial permutation of τ such that $(\pi \upharpoonright S) \in S$.

\(^4\) A completion π of a trace τ is a sequence of actions that can be arranged in a way that preserves the order of operations and results in the same final state. A strict completion is one in which no two operations conflict. A linearizable trace is one that can be arranged linearly in time that respects the operations and their effects on the system.
Specifications

The pending closure of a specification S, denoted \overline{S} is the set of S-images of serial sequences which have completions whose S-images are in S:

$$\overline{S} \overset{\text{def}}{=} \{ (\sigma \mid S) \in \Sigma^*_S : \exists \sigma' \in \Sigma^*_S. (\sigma' \mid S) \in S \text{ and } \sigma' \text{ is a completion of } \sigma \}.$$
Specifications

The pending closure of a specification \(S \), denoted \(\overline{S} \) is the set of \(S \)-images of serial sequences which have completions whose \(S \)-images are in \(S \):

\[
\overline{S} \overset{\text{def}}{=} \{(\sigma | S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. (\sigma' | S) \in S \text{ and } \sigma' \text{ is a completion of } \sigma\}.
\]

Fig. 2. The sequential specification of two-element stacks containing the (abstract) value \(a \), given as the language of a finite automaton, whose operation alphabet indicates both the argument and return values.

Fig. 3. The pending closure of the stack specification from Figure 2.
Specifications

The pending closure of a specification \(S \), denoted \(\overline{S} \) is the set of \(S \)-images of serial sequences which have completions whose \(S \)-images are in \(S \):

\[
\overline{S} \overset{\text{def}}{=} \{(\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. (\sigma' \mid S) \in S \text{ and } \sigma' \text{ is a completion of } \sigma\}.
\]

Fig. 2. The sequential specification of two-element stacks containing the (abstract) value \(a \), given as the language of a finite automaton, whose operation alphabet indicates both the argument and return values. **Fig. 3.** The pending closure of the stack specification from Figure 2.

Lemma 1. The pending closure \(\overline{S} \) of a regular specification \(S \) is regular.

Lemma 2. A trace \(\tau \) is \(S \)-linearizable if and only if there exists a strict, serial permutation \(\pi \) of \(\tau \) such that \((\pi \mid S) \in \overline{S}\).
Read-only operations

Given a method M of a library L and $m_0, m_f \in Q_M$, an $M[m_0, m_f]$-operation θ is read-only for a specification S if and only if for all $w_1, w_2, w_3 \in \Sigma_S^*$,

1. If $w_1 \cdot M[m_0, m_f] \cdot w_2 \in S$ then $w_1 \cdot M[m_0, m_f]^k \cdot w_2 \in S$ for all $k \geq 0$, and
2. If $w_1 \cdot M[m_0, m_f] \cdot w_2 \in S$ and $w_1 \cdot w_3 \in S$ then $w_1 \cdot M[m_0, m_f] \cdot w_3 \in S$.

![Diagram of a finite automaton](image-url)
Linearization points

The control graph $G_M = \langle Q_M, E \rangle$ is the quotient of a method M’s transition system by shared-state valuations V: $\langle m_1, a, m_2 \rangle \in E$ iff $\langle m_1, v_1 \rangle \xrightarrow{a}{M} \langle m_2, v_2 \rangle$ for some $v_1, v_2 \in V$. A function $\text{LP} : L \rightarrow \wp(\Sigma_L)$ is called a linearization-point mapping when for each $M \in L$:

1. each symbol $a \in \text{LP}(M)$ labels at most one transition of M,
2. any directed path in G_M contains at most one symbol of $\text{LP}(M)$, and
3. all directed paths in G_M containing $a \in \text{LP}(M)$ reach the same $m_a \in F_M$.

An action $\langle a, i \rangle$ of an M-operation is called a linearization point when $a \in \text{LP}(M)$, and operations containing linearization points are said to be effectuated; $\text{LP}(\theta)$ denotes the unique linearization point of an effectuated operation θ. A read-points mapping $\text{RP} : \Theta \rightarrow \mathbb{N}$ for an action sequence σ with operations Θ maps each read-only operation θ to the index $\text{RP}(\theta)$ of an internal θ-action in σ.

type E{
 int k;
 bool m;
 E n;
}
E H, T;

0 init(){
 atomic{
 T = alloc(E);
 T.m = false;
 T.k = ∞;
 T.n = null;
 H = alloc(E);
 H.m = false;
 H.k = −∞;
 H.n = T
 }

20 E×E locate(int k){
 21 E p = H;
 22 E c = p.n;
 23 atomic{
 24 while(c.k < k){
 25 p = c;
 26 c = p.n
 27 }
 28 return p, c
 29 }
 30 }
 31
 60 bool remove(int k){
 61 bool restart=true, retval;
 62 while (restart){
 63 E×E p,c = locate(k);
 64 atomic{
 65 if (p.n==c & & !p.m){
 66 restart = false;
 67 if (c.k==k){
 68 c.m = true;
 69 p.n = c.n;
 70 retval = true
 71 } else retval = false
 72 }
 73 } else retval = false
 74 }
 75 return retval
 76
80 bool add(int k){
 81 bool restart=true, retval;
 82 while (restart){
 83 E×E p,c = locate(k);
 84 atomic{
 85 if (p.n==c & & !p.m){
 86 restart = false;
 87 if (c.k!=k){
 88 E t = alloc(E);
 89 t.m = false;
 90 t.k = k;
 91 t.n = c;
 92 p.n = t;
 93 retval = true
 94 } else retval = false
 95 }
 96 } else retval = false
 97 return retval
 98
100

Static linearizability

Definition 4. A trace τ is \(\langle S, LP \rangle \)-linearizable when τ is effectuated, and there exists a read-points mapping RP of τ, along with an effect-preserving completion \(\pi \) of a strict, point-preserving, and serial permutation of τ such that \((\pi | S) \in S \).

Definition 5 (Static Linearizability). The system \(L[C] \) is \(S \)-static linearizable when \(L[C] \) is \(\langle S, LP \rangle \)-linearizable for some mapping \(LP \).
Checking Static Linerizability

- $A_S = \text{a deterministic automaton recognizing the Specification}$
- we define a monitor to be composed with $L[C]$ that simulates the Specification
 - methods have a new local variable RO which is initially \emptyset (records return values of read-only operations)
 - if $mf \in \text{RO}$ in an invocation of M, then $M[m_0,m_f]$ is read-only and a state of A_S in which $M[m_0,m_f]$ is enabled has been observed
- $L[C]$ executes a linearization point \Rightarrow the state of the Specification is advanced to the $M[m_0,m_f]$ successor (m_0 is the initial state of the current operation and m_f is the unique final state reachable from this lin. point)
- $L[C]$ executes an internal action from an $M[m_0,\ast]$ operation \Rightarrow RO is enriched with every m_f such that $M[m_0,m_f]$ is read-only and enabled in the current specification state
- $L[C]$ executes the return of an $M[m_0,m_f]$ read-only operation \Rightarrow if $m_f \notin \text{RO}$ then the monitor goes to an error state
EXPSPACE-hardness

- Reduce control state reachability in VASS (which is EXPSPACE-complete) to static linearizability
 - Use the library from the undecidability proof without the zero-test method (the specification excludes only executions not reaching the target state)
Checking Linearizability: Complexity (finite-state implementations)

Bounded Nb. of Threads:

- EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]
- Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Bouajjani et al., 2013: Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza: Verifying Concurrent Programs against Sequential Specifications. ESOP 2013

Hamza 2015: Jad Hamza: On the Complexity of Linearizability. NETYS 2015