Reducing Linearizability to Classic Verification Problems
Checking Lin. using “bad patterns”

- Reduce linearizability checking to reachability (EXPSPACE-complete):
 - Define (sequential) data-structure S using inductive rules
 - S is data independent and closed under projection
 - Characterize sequential executions of S using bad patterns
 - Characterize concurrent executions, linearizable w.r.t. S using bad patterns (one per rule)
 - Define a regular automaton A_i for each bad pattern
 - Reduce “L is linearizable w.r.t. S” to: for all i, $L \cap A_i = \emptyset$
Histories = Posets of events

happens-before partial order
Concurrent Queues

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

“Value v dequeued without being enqueued”

```
\begin{center}
deq: v
\end{center}
```

“Value v dequeued before being enqueued”

```
\begin{center}
deq: v \quad \text{enq: v}
\end{center}
```

“Value v dequeued twice”

```
\begin{center}
deq: v \quad \text{deq: v}
\end{center}
```

“Values dequeued in the wrong order”

```
\begin{center}
enq: v_1 \quad \text{enq: } v_2 \quad \text{deq: } v_2 \quad \text{deq: } v_1
\end{center}
```
Concurrent Queues

Linearizability ⇔ Exclusion of **bad patterns** (assuming each value is enqueued at most once - sound under data independence)

- **“Value v dequeued without being enqueued”**

 ![Diagram](value_dequeued_without_enqueuing)

- **“Value v dequeued before being enqueued”**

 ![Diagram](value_dequeued_before_enqueuing)

- **“Value v dequeued twice”**

 ![Diagram](value_dequeued_twice)

- **“Values dequeued in the wrong order”**

 ![Diagram](values_dequeued_in_wrong_order)

- **“Dequeue wrongfully returns empty”**

 ![Diagram](dequeue_wrongfully_returns_empty)

[ICALP'15]
Concurrent Queues [ICALP’15]

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

“Value v dequeued without being enqueued”

```
  deq: v
```

“Value v dequeued before being enqueued”

```
  deq: v  enq: v
    ^     ^
    |     |
    v     v
```

“Value v dequeued twice”

```
  deq: v  deq: v
    ^     ^
    |     |
    v     v
```

“Values dequeued in the wrong order”

```
  enq: v₁  enq: v₂  deq: v₂  deq: v₁
    ^     ^     ^     ^
    |     |     |     |
    v     v     v     v
```

“Dequeue wrongfully returns empty”

```
  enq: v₁
    ^
    v
```

```
  enq: v₂
    ^
    v
```

```
  deq: empty
```

```
  deq: v₁
```

```
  deq: v₂
```

```
  deq: v₁
```
Concurrent Queues

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

"Value v dequeued without being enqueued"

```
deq: v
```

"Value v dequeued before being enqueued"

```
deq: v  
enq: v
```

"Value v dequeued twice"

```
deq: v  
deq: v
```

"Values dequeued in the wrong order"

```
enq: v_1  
enq: v_2  
deq: v_2  
deq: v_1
```

"Dequeue wrongfully returns empty"

```
enq: v_1  
enq: v_2  
deq: v_2  
deq: v_1
```

```
enq: v_n  
deq: v_{n-1}  
deq: v_n
```

[ICALP’15]
Concurrent Stacks

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once, which is sound under data independence)

“Value v popped without being pushed”
“Value v popped before being pushed”
“Value v popped twice”
“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”
Concurrent Stacks

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once, which is sound under data independence)

“Value v popped without being pushed”
“Value v popped before being pushed”
“Value v popped twice”
“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”
Concurrent Stacks

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once, which is sound under data independence)

“Value v popped without being pushed”
“Value v popped before being pushed”
“Value v popped twice”
“Pop wrongfully returns empty”

"Pop doesn’t return the top of the stack"
Checking Lin. using “bad patterns”

• Reduce linearizability checking to reachability (EXPSPACE-complete):
 • Define (sequential) data-structure \(S \) using inductive rules

 • \(S \) is data independent and closed under projection

 • Characterize sequential executions of \(S \) using bad patterns

 • Characterize concurrent executions, linearizable w.r.t. \(S \) using bad patterns (one per rule)

• Define a regular automaton \(A_i \) for each bad pattern

• Reduce “\(L \) is linearizable w.r.t. \(S \)” to: for all \(i \), \(L \cap A_i = \emptyset \)
Inductive definition of the Register

\[R_{wr} : u \in R \implies Write_x \cdot (Read_x)^* \cdot u \in R \]

- including the empty sequence
Inductive definition of the Queue

Two rules to build the sequences belonging to the Queue such as

\[\text{Enq}_4 \text{Enq}_3 \text{Deq}_4 \text{Deq}_3 \text{EMP} \text{Enq}_2 \text{Enq}_1 \text{Deq}_2 \text{Deq}_1 \in Q\]

\[R_{\text{Enq}} : \quad u \in Q \land u \in \text{Enq}^* \Rightarrow u \cdot \text{Enq}_x \in Q\]

\[R_{\text{EnqDeq}} : \quad u \cdot v \in Q \land u \in \text{Enq}^* \Rightarrow \text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot v \in Q\]

\[R_{\text{EMP}} : \quad u \cdot v \in Q \land \text{no unmatched Enq in } u \Rightarrow u \cdot \text{EMP} \cdot v \in Q\]

Derivation:

\[\epsilon \in Q\]

\[\rightarrow \text{Enq}_1 \text{Deq}_1 \in Q\]

\[\rightarrow \text{Enq}_2 \text{Enq}_1 \text{Deq}_2 \text{Deq}_1 \in Q\]

\[\rightarrow \text{Enq}_3 \text{Deq}_3 \text{Enq}_2 \text{Enq}_1 \text{Deq}_2 \text{Deq}_1 \in Q\]

\[\rightarrow \text{Enq}_4 \text{Enq}_3 \text{Deq}_4 \text{Deq}_3 \text{Enq}_2 \text{Enq}_1 \text{Deq}_2 \text{Deq}_1 \in Q\]

\[\rightarrow \text{Enq}_4 \text{Enq}_3 \text{Deq}_4 \text{Deq}_3 \text{EMP} \text{Enq}_2 \text{Enq}_1 \text{Deq}_2 \text{Deq}_1 \in Q\]
Inductive definition of the Stack

\(R_{PushPop} : u \cdot v \in S \land \text{no unmatched } Push \text{ in } u, v \Rightarrow Push_x \cdot u \cdot Pop_x \cdot v \in S \)

\(R_{Push} : u \cdot v \in S \land \text{no unmatched } Push \text{ in } u \Rightarrow u \cdot Push_x \cdot v \in S \)

\(R_{EMP} : u \cdot v \in S \land \text{no unmatched } Push \text{ in } u \Rightarrow u \cdot EMP \cdot v \in S \)

Derivation for \(Push_1 Push_2 Pop_2 Pop_1 EMP Push_3 Pop_3 \in S \)

\(\epsilon \in S \)

\(\rightarrow Push_3 Pop_3 \in S \)

\(\rightarrow Push_2 Pop_2 Push_3 Pop_3 \in S \)

\(\rightarrow Push_1 Push_2 Pop_2 Pop_1 Push_3 Pop_3 \in S \)

\(\rightarrow Push_1 Push_2 Pop_2 Pop_1 EMP Push_3 Pop_3 \in S \)
Data Independence

- Input methods = methods taking an argument
- A sequential execution \(u \) is called differentiated if for all input methods \(m \) and every \(x \), \(u \) contains at most one invocation \(m(x) \)
- \(S_\neq \) is the set of differentiated executions in \(S \)

A renaming \(r \) is a function from \(D \) to \(D \). Given a sequential execution (resp., execution or history) \(u \), we denote by \(r(u) \) the sequential execution (resp., execution or history) obtained from \(u \) by replacing every data value \(x \) by \(r(x) \).

Definition 6. The set of sequential executions (resp., executions or histories) \(S \) is data independent if:

- for all \(u \in S \), there exists \(u' \in S_\neq \), and a renaming \(r \) such that \(u = r(u') \),
- for all \(u \in S \) and for all renaming \(r \), \(r(u) \in S \).

Theorem: A data-independent implementation \(I \) is linearizable w.r.t. a data-independent specification \(S \) iff \(I_\neq \) is linearizable w.r.t. \(S_\neq \).
Closure under projection

Projection: Subsequence consistent with the values

If

\[Enq_4 Enq_3 Deq_4 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

Then

\[Enq_4 Deq_4 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

Lemma

Any **data structure** defined in our framework is **closed under projection**

Proof.

The **predicates** used (\(u \in Enq^* \) and “no unmatched \(Enq \) in \(u’ \)”) are closed under projection
Characterization of sequential executions

We assume that the rules defining a data-structure are well-formed, that is:

- for all \(u \in [S] \), there exists a unique rule, denoted by \(\text{last}(u) \), that can be used as the last step to derive \(u \), i.e., for every sequence of rules \(R_{i_1}, \ldots, R_{i_n} \) leading to \(u \), \(R_{i_n} = \text{last}(u) \). For \(u \notin [S] \), \(\text{last}(u) \) is also defined but can be arbitrary, as there is no derivation for \(u \).

- if \(\text{last}(u) = R_i \), then for every permutation \(u' \in [S] \) of a projection of \(u \), \(\text{last}(u') = R_j \) with \(j \leq i \). If \(u' \) is a permutation of \(u \), then \(\text{last}(u') = R_i \).

Example 6. For Queue, we define \(\text{last} \) for a sequential execution \(u \) as follows:

- if \(u \) contains a \(\text{DeqEmpty} \) operation, \(\text{last}(u) = R_{\text{DeqEmpty}} \),
- else if \(u \) contains a \(\text{Deq} \) operation, \(\text{last}(u) = R_{\text{Enq}\text{Deq}} \),
- else if \(u \) contains only \(\text{Enq} \)’s, \(\text{last}(u) = R_{\text{Enq}} \),
- else (if \(u \) is empty), \(\text{last}(u) = R_0 \).

Since the conditions we use to define \(\text{last} \) are closed under permutations, we get that for any permutation \(u_2 \) of \(u \), \(\text{last}(u) = \text{last}(u_2) \), and \(\text{last} \) can be extended to histories. Therefore, the rules \(R_0, R_{\text{Enq}\text{Deq}}, R_{\text{DeqEmpty}} \) are well-formed.
Characterization of sequential executions

- MS(R) = the set of sequences “matching” a rule R

Lemma 3. Let $S = R_1, \ldots, R_n$ be a data-structure and u be a differentiated sequential execution. Then,

$$u \in S \iff \text{proj}(u) \subseteq \bigcup_{i \in \{1, \ldots, n\}} \text{MS}(R_i)$$

Lemma (Characterization of Queue Sequential Executions)

$w \in Q$ iff every projection w' of w is either of the form

- $\text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot v$ (with $u \in \text{Enq}^*$) or
- $u \cdot \text{EMP} \cdot v$ (with no unmatched Enq in u)
Characterization of concurrent executions

Definition 7. A data-structure $S = R_1, \ldots, R_n$ is said to be step-by-step linearizable if for any differentiated execution e, any $i \in \{1, \ldots, n\}$ and $x \in \mathbb{D}$, if e is linearizable with respect to $MS(R_i)$ with witness x, we have:

\[e \setminus x \subseteq [R_1, \ldots, R_i] \implies e \subseteq [R_1, \ldots, R_i] \]

- the history linearizable $MS(R_{EnqDeq})$ with witness d_1
 - $Enq(d_1)$ is minimal among all operations and $Deq(d_1)$ minimal among all dequeue
- Excluding the operations on d_1, the history is linearizable w.r.t. $[R_{Enq}, R_{EnqDeq}]$, i.e., $Enq(d_2) Enq(d_3) Deq(d_2) Deq(d_3)$
- The notion of step-by-step linearizable ensures that the history is linearizable w.r.t. Queue
Lemma 9. Register is step-by-step linearizable.

Proof. Let \(h \) be a differentiated history, and \(u \) a sequential execution such that \(h \sqsubseteq u \) and such that \(u \) matches the rule \(R_{WR} \) with witness \(x \). Let \(a \) and \(b_1, \ldots, b_s \) be respectively the Write and Read's operations of \(h \) corresponding to the witness.

Let \(h' = h \setminus x \) and assume \(h' \sqsubseteq [R_0, R_{WR}] \). Let \(u' \in [R_0, R_{WR}] \) such that \(h' \sqsubseteq u' \). Let \(u_2 = a \cdot b_1 \cdot b_2 \cdots b_s \cdot u' \). By using rule \(R_{WR} \) on \(u' \), we have \(u_2 \in [R_0, R_{WR}] \). Moreover, we prove that \(h \sqsubseteq u_2 \) by contradiction. Assume that the total order imposed by \(u_2 \) doesn't respect the happens-before relation of \(h \). All three cases are not possible:

- the violation is between two \(u' \) operations, contradicting \(h' \sqsubseteq u' \),
- the violation is between \(a \) and another operation, i.e. there is an operation \(o \) which happens before \(a \) in \(h \), contradicting \(h \sqsubseteq u \),
- the violation is between some \(b_i \) and a \(u' \) operation, i.e. there is an operation \(o \) which happens before \(b_i \) in \(h \), contradicting \(h \sqsubseteq u \).

Thus, we have \(h \sqsubseteq u_2 \) and \(h \sqsubseteq [R_0, R_{WR}] \), which ends the proof. \(\square \)
Lemma 4. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have (for any j):

$$e \subseteq [R_1, \ldots, R_j] \iff \text{proj}(e) \subseteq \bigcup_{i \leq j} \text{MS}(R_i)$$

Proof (\Leftarrow) By induction on the size of e. We know $e \in \text{proj}(e)$ so it can be linearized with respect to a sequential execution u matching some rule R_k ($k \leq j$) with some witness x. Let $e' = e \setminus x$.

Since S is well-formed, we know that no projection of e can be linearized to a matching set $\text{MS}(R_i)$ with $i > k$, and in particular no projection of e'. Thus, we deduce that $\text{proj}(e') \subseteq \bigcup_{i \leq k} \text{MS}(R_i)$, and conclude by induction that $e' \subseteq [R_1, \ldots, R_k]$.

We finally use the fact that S is step-by-step linearizable to deduce that $e \subseteq [R_1, \ldots, R_k]$ and $e \subseteq [R_1, \ldots, R_j]$ because $k \leq j$. □

Lemma

E is linearizable to Q iff every projection E' of E is linearizable to the form $\text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot v$ (with $u \in \text{Enq}^*$) or to the form $u \cdot \text{EMP} \cdot v$ (with no unmatched Enq in u).
Characterization of concurrent executions

Lemma 5. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have:

$$e \subseteq S \iff \forall e' \in \text{proj}(e). e' \subseteq \text{MS}(R) \text{ where } R = \text{last}(e')$$

$$e \notin S \iff \exists e' \in \text{proj}(e). e' \notin \text{MS}(R) \text{ (where } R = \text{last}(e'))$$

E is non-linearizable wrt Queue iff it has a projection E' of the form bad pattern 1, or bad pattern 2.

Bad Pattern 1 (rule R_{EnqDeq}):

\[
\begin{array}{ccc}
\text{Enq}_1 & & \text{Deq}_2 \\
\mid & & \\
\text{Enq}_1 < \text{Enq}_2 & & \\
\mid & & \\
\text{Deq}_2 < \text{Deq}_1 & & \\
\mid & & \\
\end{array}
\]

or Deq_1 before Enq_1
Characterization of concurrent executions

Lemma 5. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have:

$$e \in S \iff \forall e' \in \text{proj}(e). \ e' \in \text{MS}(R) \text{ where } R = \text{last}(e')$$

$$e \notin S \iff \exists e' \in \text{proj}(e). \ e' \notin \text{MS}(R) \text{ (where } R = \text{last}(e'))$$

E is non-linearizable wrt Queue iff it has a projection E' of the form bad pattern 1, or bad pattern 2.
Characterization of concurrent executions

- define for each \(R \), a finite state automaton \(A \) which recognizes (a subset of) the executions \(e \) which have a projection not linearizable w.r.t. MS(\(R \))

Definition 8. A rule \(R \) is said to be co-regular if we can build an automaton \(A \) such that, for any data-independent implementation \(I \), we have:

\[
I \cap A \neq \emptyset \iff \exists e \in I, e' \in \text{proj}(e). \text{last}(e') = R \land e' \notin \text{MS}(R)
\]

![Diagram](image-url)
Characterization of concurrent executions

- define for each R, a finite state automaton A which recognizes (a subset of) the executions e which have a projection not linearizable w.r.t. $\text{MS}(R)$

Definition 8. A rule R is said to be co-regular if we can build an automaton A such that, for any data-independent implementation \mathcal{I}, we have:

$$\mathcal{I} \cap A \neq \emptyset \iff \exists e \in \mathcal{I}_\ast, e' \in \text{proj}(e). \text{last}(e') = R \wedge e' \notin \text{MS}(R)$$

REMP

![REMP Diagram]

we assume that all actions call $\text{Enq}(1)$ occur at the beginning
Exercices (2)

We consider a sequential specification defined by the language \(S = (a())^* (b())^* \) where all the invocations of \(a() \) occur before invocations of \(b() \).

1. Describe a reduction of checking linearizability w.r.t. the specification \(S \) to a reachability problem. More precisely, describe a labeled transition system (monitor) that accepts exactly all the histories of a given implementation (sequences of call and return actions) that are \textit{not} linearizable w.r.t. \(S \). The synchronized product between a transition system representing an implementation and this monitor (where the synchronization actions are call and returns) reaches an accepting state of the monitor iff the implementation is not linearizable.
Exercices (3)

- What is the complexity of checking linearizability of a differentiated history of a concurrent queue?
Exercises (3)

• What is the complexity of checking linearizability of a differentiated history of a concurrent queue?

“Value v dequeued without being enqueued”

```
| deq: v | enq: v |
| └───────┘ └───────┘
```

“Value v dequeued before being enqueued”

```
| deq: v | enq: v |

```

“Value v dequeued twice”

```
| deq: v | deq: v |

```

“Values dequeued in the wrong order”

```
| enq: v_1 | enq: v_2 | deq: v_2 | deq: v_1 |

```

“Dequeue wrongfully returns empty”

```
| deq: empty |

```