Papers on template games

1. Categorical combinatorics of scheduling and synchronization in game semantics [pdf] [bib]

January 2018 - January 2019

Game semantics is the art of interpreting types as games and programs as strategies interacting in space and time with their environment. In order to reflect the interactive behavior of programs, strategies are required to follow specific scheduling policies. Typically, in the case of a purely sequential programming language, the program (Player) and its environment (Opponent) will play one after the other, in a strictly alternating way. On the other hand, in the case of a concurrent language, Player and Opponent will be allowed to play several moves in a row, in a non-alternating way. In both cases, the scheduling policy is designed very carefully in order to ensure that the strategies synchronize properly and compose well when plugged together. A longstanding conceptual problem has been to understand when and why a given scheduling policy works and is compositional in that sense. In this paper, we exhibit a number of simple and fundamental combinatorial structures which ensure that a given scheduling policy encoded as synchronization template defines a symmetric monoidal closed (and in fact star-autonomous) bicategory of games, strategies and simulations. To that purpose, we choose to work at a very general level, and illustrate our method by constructing two template game models of linear logic with different flavors (alternating and non-alternating) using the same categorical combinatorics, performed in the category of small categories. As a whole, the paper may be seen as a hymn in praise of synchronization, building on the notion of synchronization algebra in process calculi and adapting it smoothly to programming language semantics, using a combination of ideas at the converging point of game semantics and of categorical algebra.

2. Template games and differential linear logic [pdf] [bib]

January 2019 - April 2019

We extend our template game model of multiplicative additive linear logic (MALL) with an exponential modality of linear logic (LL) derived from the standard categorical construction Sym of the free symmetric monoidal category. We obtain in this way the first game semantics of differential linear logic (DiLL). Its formulation relies on a careful and healthy comparison with the model of distributors and generalised species designed ten years ago by Fiore, Gambino, Hyland and Winskel. Besides the resolution of an old open problem of game semantics, the study reveals an unexpected and promising convergence between linear logic and homotopy theory.


Categorical combinatorics of scheduling and synchronization in game semantics [pdf]

January 2019

Slides of a recent talk in Lisbon given on the occasion of POPL 2019.