The calendar of events (iCal format).
In order to add the event calendar to your favorite agenda, subscribe to the calendar by using this link.
Habilitation defences
Thursday January 9, 2025, 2PM, Amphi Turing
Jean Krivine (IRIF) Models and Languages For Concurrent Systems
We show that (1) and (2) can actually be modelled using traditional causal semantics for concurrency, which are based on event structures, a theory developed by Winskel in the late 80s.
Habilitation defences
Friday December 6, 2024, 1PM, Salle 2011 (Sophie Germain)
Sam Van Gool (IRIF) Logical reflections: Profinite monoids, propositional quantifiers, and temporal operators
The defense will be followed by drinks at IRIF, on the 4th floor of the same building.
The manuscript is available via: https://www.samvangool.net/hdr.html
Habilitation defences
Wednesday March 20, 2024, 10AM, Amphithéâtre Turing, bâtiment Sophie Germain
Geoffroy Couteau (IRIF) Correlated Pseudorandomness in Secure Computation
Habilitation defences
Monday December 4, 2023, 2PM, Amphithéâtre Pierre-Gilles de Gennes du bâtiment Condorcet
Sylvain Perifel (IRIF) L'aléatoire par le prisme des polynômes et de la compression
Habilitation defences
Thursday December 15, 2022, 2PM, Amphithéâtre Pierre-Gilles de Gennes, Bâtiment Condorcet
Arnaud Sangnier (IRIF, Université Paris Cité) Algorithmic techniques for the verification of counter systems and parameterised networks
Nathalie Bertrand - Examinatrice Christel Baier - Rapporteuse Véronique Bruyère - Examinatrice Thomas Colcombet - Examinateur Javier Esparza - Rapporteur Jérôme Leroux - Rapporteur
Résumé: Model-checking is a verification technique which is in the past has been successfully applied to verify automatically the behavior of finite state systems. This approach consists in modelling a computing system by a mathematical model, in translating its specification into a logical formalism and then in proposing algorithms to check whether a model satisfies a logical formula. When the considered models have an infinite number of states, this method can easily lead to undecidable model-checking problems and one has hence to find the right trade-off between the expressiveness of models and specification languages and the feasibility of the verification. In this thesis, I present my contributions to the field of verification of infinite states systems where I have considered two main families of models. The first one are counter systems which can be seen as programs manipulating variables (called counters) taking their value in the natural. The second one are parameterised networks which can be seen as an abstraction of distributed networks where the number of participating entities is not fixed a priori and is unbounded. For these different models, I study exhaustively when the automatic verification is feasible and in the positive cases I try to design model-checking algorithms with optimal complexity bounds.
Plus d'informations disponibles sur la page web suivante :
Habilitation defences
Tuesday April 6, 2021, 2PM, Online
Wolfgang Steiner (IRIF) Numeration systems: automata, combinatorics, dynamical systems, number theory
Habilitation defences
Thursday November 28, 2019, 2PM, 3052
Constantin Enea Specifying and Verifying Consistency Properties
Habilitation defences
Friday November 22, 2019, 2PM, Amphi 6C, Halle aux Farines
Yann Régis-Gianas (IRIF) Quelques métamorphoses de programmes
Habilitation defences
Tuesday June 18, 2019, 10AM, Salle des Thèses, Halle aux Farines
Yves Guiraud Méthodes de réécriture en algèbre supérieure
Habilitation defences
Thursday May 16, 2019, 2PM, Salle 0011, Bâtiment Sophie Germain
Pierre Charbit (IRIF) About Some Hereditary Classes of Graphs : Algorithms - Structure - Coloration
Jury:
Pierre Fraigniaud, Directeur de Recherche, CNRS, Paris
Frédéric Havet, Directeur de Recherche, CNRS, Sophia Antopolis
Claire Mathieu, Directrice de Recherche, CNRS, Paris
Christophe Paul, Directeur de Recherche, CNRS, Montpellier
Alex Scott, Professeur, Oxford University
Jean-Sébastien Sereni, Directeur de Recherche, CNRS, Strasbourg
Laurent Viennot, Directeur de recherche, INRIA, Paris
Habilitation defences
Wednesday November 28, 2018, 2PM, Salle 2014 du Bâtiment Sophie Germain
Enrica Duchi (IRIF) Polyominoes, permutominoes and permutations
après avis des rapporteuses :
Habilitation defences
Friday November 23, 2018, 2PM, Salle 234C, Halle aux Farines
Christine Tasson (IRIF) Sémantiques des Calculs Distribués, Différentiels et Probabilistes
Le jury est composé des membres suivants: Lisbeth Fajstrup (examinatrice), Marcelo Fiore (rapporteur), Pierre Fraigniaud (rapporteur), Achim Jung (examinateur), Alexandra Silva (examinatrice), Tarmo Uustalu (examinateur)
Habilitation defences
Monday November 27, 2017, 2PM, Salle des Thèses, Halle aux Farines
Stefano Zacchiroli (IRIF) Large-scale Modeling, Analysis, and Preservation of Free and Open Source Software
Habilitation defences
Monday November 20, 2017, 10AM, Salle 227C, Halle aux Farines
Paul-André Melliès (IRIF) Une étude micrologique de la négation
La logique est aussi conçue pour fonder la sémantique des jeux en théorie des types, et pour l'articuler de manière précise et harmonieuse avec la logique linéaire et la théorie des continuations dans les langages de programmation.
Habilitation defences
Tuesday July 11, 2017, 2:30PM, Salle 0010, Bâtiment Sophie Germain
Reza Naserasr (IRIF) Projective Cubes, a coloring point of view
The generalization of this view is the Cayley graph $\mathbb Z_2^k, {e_1,e_2, \cdots, e_k, J}$ which is isomorphic to the projective cube of dimension $k$ also known as the folded cube.
Thus we consider the problem of mapping planar graphs into projective cubes, and show that this question is related to several other notions of coloring such as the edge-chromatic number of planar multi-graphs, circular chromatic number and the fractional chromatic number.
Finally, after providing a test to decide if a graph $B$ of odd-girth $2k+1$ admits a homomorphism from any graph of tree-width at most $t$ and odd-girth at least $2k+1$, we show that every 3-tree of odd-girth at least $2k+1$ admits a homomorphism to the projective cube of dimension $2k$.