Dans cet exposé je vous présenterai les résultats obtenus au cours de ma thèse, laquelle traite de noyaux et de complexité paramétrée. La complexité paramétrée est une branche de l'algorithmie qui analyse la complexité d'un problème en fonction de la taille des données n et d'un paramètre k (arbitraire). L'objectif est de pouvoir attaquer des problèmes difficiles (NPc) et de montrer que l’exposition combinatoire n'est fonction que du paramètre (et pas de la taille des données), cad, trouver des algorithmes en f(k)+p(n). L'extraction de noyau est une méthode qui permet d'obtenir des algorithmes avec un telle complexité. Il s'agit d'un pré-calcul (une réduction polynomiale) qui réduit la taille des données en temps polynomial, tout en garantissant que la taille du noyau (l'instance réduite) est bornée par une fonction du paramètre g(k). Il suffit de résoudre le problème dans le noyau, de n'importe quelle façon, pour obtenir un algorithme en f(g(k)) + p(n). La méthode de décomposition en régions [Alber, Fellows, Niedermeier] est un résultat majeur dans le domaine des noyaux. Elle a permis de construire de nombreux noyaux linaires pour des variantes de la Domination dans les graphes planaires. J'illustrerai cette méthode avec le cas de la Domination Rouge Bleu, qui consiste à trouver, dans un graphe bicoloré, un ensemble de sommets bleus tel que tous les sommets rouges sont à distance au plus 1 de la solution. Cette méthode a ensuite été généralisée par des méta-résultats [ex: Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos], qui prouve l'existence de noyaux (dans des graphes peu denses) pour tout problème vérifiant certaines conditions génériques. Je présenterai un de ses méta-résultats, qui se base sur la programmation dynamique et sur la décomposition en protrusion, et qui a le mérite d’être constructif.