Soutenances Gestion des soutenances Soutenances d'habilitation Le calendrier des séances (format iCal). Pour ajouter le calendrier des séances à votre agenda favori, souscrire au calendrier en indiquant ce lien. Séances passées Année 2024 Soutenances d'habilitation Mercredi 20 mars 2024, 10 heures, Amphithéâtre Turing, bâtiment Sophie Germain Geoffroy Couteau (IRIF) Correlated Pseudorandomness in Secure Computation The focus of this habilitation thesis is on secure computation, an area of cryptography that lets multiple parties distributively compute a function on their private data. After providing a high-level introduction to my work in cryptography, the manuscript provides a gentle introduction to secret-sharing-based secure computation, which is aimed at a general audience. Then, the last chapter covers some of my contributions to secure computation through the introduction and construction of pseudorandom correlation generators (PCG), a cryptographic primitive that enables considerable efficiency improvements for a wide variety of secure computation protocols. I provide a step-by-step introduction to the notion of PCG and its security properties, outline the challenges in building them, and present a general framework for constructing PCGs. The chapter also contains extensive efficiency considerations and covers various optimizations, as well as extensions and generalizations of the notion of PCGs. Altogether, this provides a unified introduction to the work on pseudorandom correlation generators developed in my work over the past five years, aimed at a broad cryptography audience. Jury: Michel Abdalla, reviewer, DR CNRS at ENS Paris Benny Applebaum, reviewer, professor at Tel-Aviv University Ivan Damgård, examiner, professor at Aarhus University Carmit Hazay, reviewer, professor at Bar-Ilan University Sophie Laplante, examiner, professor at Université Paris-Cité Année 2023 Soutenances d'habilitation Lundi 4 décembre 2023, 14 heures, Amphithéâtre Pierre-Gilles de Gennes du bâtiment Condorcet Sylvain Perifel (IRIF) L'aléatoire par le prisme des polynômes et de la compression Jury : - Claire Mathieu, présidente, directrice de recherche au CNRS, Académie des sciences - Meena Mahajan, rapporteuse, professeure à l'Institut des sciences mathématiques de Chennai - Santiago Figueira, rapporteur, professeur à l'université de Buenos Aires - Olivier Bournez, rapporteur, professeur à l'École polytechnique - Damiano Mazza, examinateur, directeur de recherche au CNRS - Olivier Carton, examinateur, professeur à l'université Paris Cité, IUF « Résumé opérationnel » : Dans une première partie, nous comparerons quelques méthodes efficaces de compression (automates à pile, LZ'78, espace polylogarithmique), puis nous étudierons la « catastrophe du premier bit » pour l'algorithme de Lempel-Ziv, où l'ajout d'un seul bit peut changer le taux de compression. La seconde partie traitera de complexité algébrique, en particulier de bornes inférieures pour certains modèles de calcul de polynômes, et du célèbre problème de test d'identité polynomiale qui résiste encore aux tentatives de dérandomisation. Année 2022 Soutenances d'habilitation Jeudi 15 décembre 2022, 14 heures, Amphithéâtre Pierre-Gilles de Gennes, Bâtiment Condorcet Arnaud Sangnier (IRIF, Université Paris Cité) Algorithmic techniques for the verification of counter systems and parameterised networks Jury: Nathalie Bertrand - Examinatrice Christel Baier - Rapporteuse Véronique Bruyère - Examinatrice Thomas Colcombet - Examinateur Javier Esparza - Rapporteur Jérôme Leroux - Rapporteur Résumé: Model-checking is a verification technique which is in the past has been successfully applied to verify automatically the behavior of finite state systems. This approach consists in modelling a computing system by a mathematical model, in translating its specification into a logical formalism and then in proposing algorithms to check whether a model satisfies a logical formula. When the considered models have an infinite number of states, this method can easily lead to undecidable model-checking problems and one has hence to find the right trade-off between the expressiveness of models and specification languages and the feasibility of the verification. In this thesis, I present my contributions to the field of verification of infinite states systems where I have considered two main families of models. The first one are counter systems which can be seen as programs manipulating variables (called counters) taking their value in the natural. The second one are parameterised networks which can be seen as an abstraction of distributed networks where the number of participating entities is not fixed a priori and is unbounded. For these different models, I study exhaustively when the automatic verification is feasible and in the positive cases I try to design model-checking algorithms with optimal complexity bounds. Plus d'informations disponibles sur la page web suivante : https://www.irif.fr/~sangnier/hdr.html Année 2021 Soutenances d'habilitation Mardi 6 avril 2021, 14 heures, Online Wolfgang Steiner (IRIF) Numeration systems: automata, combinatorics, dynamical systems, number theory Composition du jury : Valérie Berthé, DR CNRS, Université de Paris, examinatrice Yann Bugeaud, Professeur, Université de Strasbourg, rapporteur Olivier Carton, Professeur, Université de Paris, président du jury Karma Dajani, Professeure, Universiteit Utrecht, rapporteuse Jean-Michel Muller, DR CNRS, ENS Lyon, examinateur Cyril Nicaud, Professeur, Université Gustave Eiffel, examinateur Jeffrey O. Shallit, Professeur, University of Waterloo, rapporteur Brigitte Vallée, DR CNRS émérite, Université de Caen Normandie, examinatrice Le manuscrit est disponible à l’adresse https://www.irif.fr/~steiner/hdr.pdf Les transparents sont disponibles à l'adresse https://www.irif.fr/~steiner/hdr_talk.pdf La soutenance sera diffusée à l'adresse https://www.youtube.com/channel/UCHbdRBy9VwdfYmBjl_ZIyeQ Année 2019 Soutenances d'habilitation Jeudi 28 novembre 2019, 14 heures, 3052 Constantin Enea Specifying and Verifying Consistency Properties Jury: Parosh Aziz Abdulla, Uppsala University, Sweden (examiner) Hagit Attiya, Technion, Israel (examiner) Ahmed Bouajjani (examiner) Giuseppe Castagna (reviewer) Suresh Jagannathan, Purdue University, United States (reviewer) Rupak Majumdar, Max Planck Institute Kaiserslautern, Germany (reviewer) Mooly Sagiv, Tel-Aviv University, Israel (examiner) Soutenances d'habilitation Vendredi 22 novembre 2019, 14 heures, Amphi 6C, Halle aux Farines Yann Régis-Gianas (IRIF) Quelques métamorphoses de programmes Jury: - Sandrine Blazy (examinatrice) - Giuseppe Castagna (rapporteur) - Roberto di Cosmo (examinateur) - Xavier Leroy (examinateur) - Peter Thiemann (rapporteur) - Stephanie Weirich (rapporteure) Soutenances d'habilitation Mardi 18 juin 2019, 10 heures, Salle des Thèses, Halle aux Farines Yves Guiraud Méthodes de réécriture en algèbre supérieure Soutenances d'habilitation Jeudi 16 mai 2019, 14 heures, Salle 0011, Bâtiment Sophie Germain Pierre Charbit (IRIF) About Some Hereditary Classes of Graphs : Algorithms - Structure - Coloration Rapporteurs: Laurent Viennot, Directeur de recherche, INRIA, Paris Alex Scott, Professeur, Oxford University Christophe Paul, Directeur de Recherche, CNRS, Montpellier Jury: Pierre Fraigniaud, Directeur de Recherche, CNRS, Paris Frédéric Havet, Directeur de Recherche, CNRS, Sophia Antopolis Claire Mathieu, Directrice de Recherche, CNRS, Paris Christophe Paul, Directeur de Recherche, CNRS, Montpellier Alex Scott, Professeur, Oxford University Jean-Sébastien Sereni, Directeur de Recherche, CNRS, Strasbourg Laurent Viennot, Directeur de recherche, INRIA, Paris Année 2018 Soutenances d'habilitation Mercredi 28 novembre 2018, 14 heures, Salle 2014 du Bâtiment Sophie Germain Enrica Duchi (IRIF) Polyominoes, permutominoes and permutations La soutenance aura lieu devant le jury suivant : Frédérique Bassino, (LIPN, Université Paris 13) François Bergeron, (UQAM, Université du Québec à Montreal) Jean-Marc Fédou, (I3S, Université de Nice Sophia-Antipolis) Vlady Ravelomanana, (IRIF, Université Paris Diderot) Bruno Salvy, (LIP, ENS Lyon) Michèle Soria, (LIP6, Université Paris 6) après avis des rapporteuses : Marilena Barnabei, (Dipartimento di Matematica, Università di Bologna) Frédérique Bassino, (LIPN, Université Paris 13) Valérie Berthé, (IRIF, Université Paris Diderot) Soutenances d'habilitation Vendredi 23 novembre 2018, 14 heures, Salle 234C, Halle aux Farines Christine Tasson (IRIF) Sémantiques des Calculs Distribués, Différentiels et Probabilistes Depuis les années 60, la sémantique s'est avérée très utile pour introduire des langages de haut niveau permettant d'écrire des programmes complexes et de les comprendre à un niveau mathématique précis. Dans les années 80, la logique linéaire a été introduite par Girard, reflétant des propriétés sémantiques liées à l'utilisation des ressources. Cette direction a été poursuivie par Ehrhard dans les années 2000 avec l'introduction du lambda-calcul différentiel. Dans ces modèles, les programmes sont approximés par des polynômes, dont les monômes représentent les appels d'un programme à ses entrées lors de son exécution. Cette approche analytique a constitué un outil crucial pour l'étude des propriétés quantitatives apparaissant dans les langages de programmation probabiliste. En parallèle, depuis les années 90, plusieurs modèles géométriques ont été développés pour représenter des traces d'exécution dans les systèmes distribués. Dans cette thèse d'habilitation, nous présentons des modèles que nous avons étudiés dans ces trois domaines : les systèmes distribués, le lambda-calcul différentiel, la programmation probabiliste, ainsi que les techniques générales nécessaires et les résultats qu'ils nous ont permis d'obtenir. Celles-ci ont nécessité l'utilisation et le développement d'outils issus de la combinatoire, de la topologie dirigée, de l'analyse fonctionnelle, de la théorie des catégories et des probabilités. Le jury est composé des membres suivants: Lisbeth Fajstrup (examinatrice), Marcelo Fiore (rapporteur), Pierre Fraigniaud (rapporteur), Achim Jung (examinateur), Alexandra Silva (examinatrice), Tarmo Uustalu (examinateur) Année 2017 Soutenances d'habilitation Lundi 27 novembre 2017, 14 heures, Salle des Thèses, Halle aux Farines Stefano Zacchiroli (IRIF) Large-scale Modeling, Analysis, and Preservation of Free and Open Source Software https://upsilon.cc/~zack/research/hdr/ Soutenances d'habilitation Lundi 20 novembre 2017, 10 heures, Salle 227C, Halle aux Farines Paul-André Melliès (IRIF) Une étude micrologique de la négation La logique tensorielle est une logique primitive du tenseur et de la négation, dont l'objectif est de circonscrire les ingrédients élémentaires du raisonnement logique, et de les étudier au moyen des outils de l'algèbre contemporaine. La logique est aussi conçue pour fonder la sémantique des jeux en théorie des types, et pour l'articuler de manière précise et harmonieuse avec la logique linéaire et la théorie des continuations dans les langages de programmation. https://www.irif.fr/~mellies/habilitation.html Soutenances d'habilitation Mardi 11 juillet 2017, 14 heures 30, Salle 0010, Bâtiment Sophie Germain Reza Naserasr (IRIF) Projective Cubes, a coloring point of view The four-color theorem states that every simple planar graph admits a homomorphism to $K_4$. In many proposed extensions or reformulations of this theorem $K_4$ is regarded as the complete graph on four vertices. In this work we consider $K_4$ as the Cayley graph “$\mathbb Z_2^2, {01,10,11}$”. Main observation, which is hidden behind the fact that 2 is a very small number, is that {01,10} is a basis of $\mathbb Z_2^2$ and that 11=01+10. The generalization of this view is the Cayley graph $\mathbb Z_2^k, {e_1,e_2, \cdots, e_k, J}$ which is isomorphic to the projective cube of dimension $k$ also known as the folded cube. Thus we consider the problem of mapping planar graphs into projective cubes, and show that this question is related to several other notions of coloring such as the edge-chromatic number of planar multi-graphs, circular chromatic number and the fractional chromatic number. Finally, after providing a test to decide if a graph $B$ of odd-girth $2k+1$ admits a homomorphism from any graph of tree-width at most $t$ and odd-girth at least $2k+1$, we show that every 3-tree of odd-girth at least $2k+1$ admits a homomorphism to the projective cube of dimension $2k$.