La catégorie des infini-catégories strictes n'est pas un topos. Cela se manifeste notamment par le fait que les colimites ne sont pas universelles, c'est-à-dire ne sont pas préservées par tiré-en-arrière (i.e. “pullback”) le long de n'importe quelle flèche. De manière équivalente, cela signifie qu'il existe des flèches le long desquelles le foncteur tiré-en-arrière n'admet pas d'adjoint à droite. Lorsqu'on se restreint à la catégorie des 1-catégories, une caractérisation “facile” de ce type de flèches a été mise en évidence par J. Giraud en 1964 et indépendamment par F. Conduché en 1972. Dans cet exposé, je présenterai le travail de Giraud sur la question et j'expliquerai comment l'étendre au cas des infini-catégories strictes. J'expliquerai ensuite pourquoi cette question de non-universalité des colimites est intimement liée à une question de stabilité des résolutions polygraphiques par tiré-en-arrière et cela me permettra d'achever la démonstration d'un résultat laissé en suspens lors de mon exposé du 16/02/2018.