La conjecture de Simpson affirme (informellement) que tout infini groupoïde (ou même infini catégorie) faible est équivalent à un dont les compositions, lois d'associativités, et lois d'échanges sont strictes, et seules les lois 'd'unités' (et donc aussi d'inverses) sont faibles. La conjecture est relativement vague et laisse de la place à l'interprétation, aussi bien sur la liste précise des opérations que l'ont veut rendre strictes, que sur la façon dont les “unités faibles” sont définies.

Dans l'exposé j'esquisserai la première preuve d'une forme de cette conjecture : celle-ci s'applique aux infinis groupoïdes, et strictifie les compositions dites 'régulières' (celles dont le diagramme est topologiquement une boule). Ce type d'opérations est suffisant pour engendrer toutes les opérations et cohérences attendues dans un infini groupoïde faible, dès qu'on lui ajoute des unités faibles et des inverses faibles. C'est donc une réponse satisfaisante à la conjecture d'origine, mais il existe encore des formes plus fortes de la conjecture non démontrées pour l'instant.

La démonstration repose en très grande partie sur des résultats nouveaux en théorie des polygraphes et sur d’excellentes propriétés d'une certaine classe des polygraphes dit “réguliers”. La plus grande partie de l'exposé sera concentrée sur ces aspects 'polygraphiques'.

Note: Il s'agit de la suite de mon exposé de Septembre “Les polygraphes non-unitaires et la conjecture de Simpson”, mais je ferai tous les rappels nécessaires.