Depuis leur introduction par Leray dans les années 50 les suites spectrales sont devenues essentielles dans beaucoup de domaines mathématiques comme outil de calculs homologiques et homotopiques. Parmi les sources importantes de suites spectrales on trouve les complexes filtrés et les bicomplexes. On introduit pour chacune de ces catégories la notion de E_r-quasi-isomorphisme, liée à la r-ième page des suites spectrales associées aux objets considérés. On montrera dans cet exposé, une fois toutes les notions utiles définies (y compris les structures de catégorie modèles) que les catégories des complexes filtrés et des bicomplexes admettent des structures de catégorie modèle au sens de Quillen, où les équivalences faibles sont les E_r-quasi-isomorphismes.

Ceci est un travail en commun avec: Joana Cirici, Daniela Egas-Santander et Sarah Whitehouse.