Dans cet exposé, je présenterai un théorème permettant de relever une structure de catégorie de modèles le long d'une bifibration dont les fibres ont elles-mêmes un bon comportement homotopique. Ce résultat généralise deux théorèmes de la littérature (le premier par Roig et Stanculescu, le deuxième par Harpaz et Prasma) et a été motivé par l'étude de la construction de Reedy.

Celle-ci est un outil primordial en algèbre homotopique, qui permet de munir d'une structure de catégorie de modèles une catégorie de diagrammes à valeurs dans une catégorie de modèles quand la catégorie index admet de bonnes propriétés. Cette construction passe par l'utilisation de deux foncteurs, le latch et le match, dont l'introduction pourrait paraître a priori ad hoc. Après les rappels nécessaires, je montrerai qu'il n'en est rien et qu'ils sous-tendent en fait une bifibration dont l'étude, via notre théorème, éclaire l'étape clé dans la construction de Reedy.

Si le temps le permet, j'esquisserai rapidement quelques généralisations existantes de la construction de Reedy dans lesquelles la vue bifibrationnelle s'intègre également.