Eppstein et Mumford (2014) ont récemment défini l'ensemble des polyèdres en coin comme l'ensemble des polyèdres 3D dont les sommets sont à coordonnées entières positives, les arêtes sont parallèles aux axes de coordonnées et tous les sommets sont visibles depuis l'infini dans la direction (1,1,1). Ils décrivent l'ensemble des graphes de polyèdres en coin, i.e. l'ensemble des graphes qui peuvent être squelette d'un polyèdre en coin : vus comme cartes planaires, il s'agit exactement des graphes duaux de certaines triangulations bicoloriées particulières, que nous appelons triangulations en coin enracinées. Nous comptons les graphes de polyèdres en coin en déterminant la série génératrice des triangulations en coin enracinées selon leur nombre de sommets : nous en obtenons une expression explicite en fonction de la série génératrice des nombres de Catalan. Nous montrons tout d'abord que ce résultat découle de la méthode classique de décomposition de Tutte. Ensuite, pour expliquer l'apparition des nombres de Catalan, nous donnons une décomposition algébrique directe des triangulations en coin~: en particulier nous mettons en évidence une famille de triangulations en amande qui admet une décomposition structurellement équivalente à celle des arbres binaires. Pour finir nous présentons rapidement une bijection directe entre les arbres binaires et ces triangulations en amande.