Dans cet exposé, nous nous intéressons à plusieurs modèles de marches sur le réseau~${\mathbb Z}^2$, pour obtenir, à longueur~$n$ fixée et pour certains ensembles de pas bien choisis, des bijections entre, d'une part, des modèles de marches du demi-plan supérieur terminant sur l'axe des abscisses, et d'autre part, des modèles de marches du quart de plan.

Une première bijection tout à fait explicite est classique pour les marches tandem, c'est-à-dire entre les marches du demi-plan empruntant les pas Nord, Ouest et Sud-Est, et les marches du quart de plan empruntant les mêmes pas. Nous donnons d'abord un nouveau calcul de cette bijection et de son inverse, exprimé à l'aide d'automates réalisant des transductions. L'analyse de ce calcul permet un suivi de paramètres sur la position finale des marches, raffinant ainsi la bijection initiale.

Le résultat se généralise d'abord en une bijection entre une bicoloration du modèle précédent à trois pas confiné au demi-plan et le modèle du quart de plan obtenu en complétant l'ensemble de pas par symétrie, de sorte à autoriser les six pas Nord, Nord-Ouest, Ouest, Sud, Sud-Est et Est. Cette nouvelle bijection fournit une explication bijective au facteur~$2^n$ observé par Bousquet-Mélou et Mishna pour le modèle à six pas.

Une autre généralisation fournit une bijection entre modèles à grands pas. Plus précisément, pour chaque~$p$ donné, en conservant le pas Sud-Est et en remplaçant les pas Nord et Ouest par les $p+1$ pas de longueur~$p$ dans le quadrant Nord-Ouest. Ce modèle est proche, mais distinct, des modèles de chemins tandems généralisés étudiés par Bousquet-Mélou, Fusy et Raschel.

(Exposé sur la base de travaux en cours avec A.~Bostan, A.~Mahboubi et K.~Yeats.)