We develop a denotational semantics of full propositional classical linear logic extended with least and greatest fixpoints of formulae (\mu LL) in coherence spaces with totality. The presence of totality predicates, which are a denotational account of the syntactic notion of normalization, allows for dual and non-trivial denotational interpretations of the mu and nu fix point operators involving Knaster Tarski's theorem. We illustrate the construction by means of several examples such as integer numbers system, and by an embedding of Gödel's system T in \mu LL. This specific denotational semantics of muLL is clearly an instance of a more general pattern. We also encode the exponentials of linear logic using least and greatest fixpoints and then explain the difference between the new exponentials and the original ones from denotational semantics point of view. This is based on joint work by Thomas Ehrhard.