Vérification
Lundi 10 décembre 2018, 11 heures 10, Salle 1007
Mahsa Shirmohammadi (LIS - CNRS & Université Aix-Marseille) On the Complexity of Value Iteration

Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally associated to the MDP. At the same time, value iteration provides a policy for the MDP that is optimal on a given finite horizon n. In this talk, we settle the computational complexity of value iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is EXP-complete, thus resolving an open problem that goes back to the seminal 1987 paper on the complexity of MDPs by Papadimitriou and Tsitsiklis. As a stepping stone, we show that it is EXP-complete to compute the n-fold iteration (with n in binary) of a function given by a straight-line program over the integers with max and + as operators.

A preliminary draft of this work is available on arXiv:

https://arxiv.org/abs/1807.04920v2

Vérification
Lundi 3 décembre 2018, 11 heures 10, Salle 1007
Vincent Rahli (SnT - University of Luxembourg) Building Reliable Systems on Reliable Foundations

Current mainstream programming/verification tools are not well-suited to build safe and secure distributed programs that meet required specifications. This is a serious issue because our modern society came to heavily rely on complex and constantly evolving distributed systems that need to tolerate all kinds of threats and attacks in order to protect critical and sensitive resources. This issue is due in part to the lack of formalisms, tools, and reliable foundations. Indeed, in the past few decades, we have seen a spurt of verification tools that handle well functional sequential code, but expressive tools to reason about distributed programs are only just emerging. Moreover, a major issue with such verification tools is that they are often very complex themselves, making them error prone.

In this talk I will present some of my contributions to this area, namely, I will present my work on (1) designing formal verification tools to reason about complex distributed systems (such as Byzantine fault tolerant consensus protocols as used in Blockchain technology); and (2) on ensuring that those verification tools rely on correct foundations.

I will conclude by showing how I believe distributed systems will have a positive impact on modern foundational/logical frameworks, and vice versa.

Vérification
Lundi 26 novembre 2018, 11 heures 10, Salle 1007
Matthias Függer (LSV - CNRS & ENS de Cachan) Fast Asymptotic and Approximate Consensus in Highly Dynamic Networks

Agreeing on a common value in a distributed system is a problem that lies at the heart of many distributed computing problems and occurs in several flavors. Unfortunately, even modest network dynamics already prohibit solvability of exact consensus, where agents have to decide on a single output value that is within the range of the agents' initial values.

For many problems (distributed control, clock synchronization, load balancing, …) it is however sufficient to asymptotically converge to the same value, or decide on values not too far from each other. We study solvability of these consensus variants in highly dynamic networks, provide time complexity results, and present fast algorithms. We then show how the results on dynamic networks are relevant for classical fault-models, such as asynchronous message passing with crashes.

The talk is on previous and current research with Bernadette Charron-Bost (LIX), Thomas Nowak (LRI), and Manfred Schwarz (ECS, TU Wien).

Vérification
Lundi 12 novembre 2018, 11 heures 10, Salle 1007
Arvid Jakobsson (Huawei Research & LIFO -Université d'Orléans) Replicated Synchronization of BSPlib Programs

The BSP model (Bulk Synchronous Parallel) simplifies the construction and evaluation of parallel algorithms, with its simplified synchronization structure and cost model. Nevertheless, imperative BSP programs can suffer from synchronization errors. Programs with textually aligned barriers are free from such errors, and this structure eases program comprehension. We propose a simplified formalization of barrier inference as data flow analysis, which verifies statically whether an imperative BSP program has replicated synchronization, which is a sufficient condition for textual barrier alignment.

Vérification
Lundi 5 novembre 2018, 11 heures 10, Salle 1007
Adrien Guatto (IRIF) Hierarchical Memory Management for Mutable State

It is well known that modern functional programming languages are naturally amenable to parallel programming. Achieving efficient parallelism using functional languages, however, remains difficult. Perhaps the most important reason for this is their lack of support for efficient in-place updates, i.e., mutation, which is important for the implementation of both parallel algorithms and the run-time system services (e.g., schedulers and synchronization primitives) used to execute them.

In this joint work with Sam Westrick, Ram Raghunathan, Umut Acar, and Matthew Fluet, we propose techniques for efficient mutation in parallel functional languages. To this end, we couple the memory manager with the thread scheduler to make reading and updating data allocated by nested threads efficient. We describe the key algorithms behind our technique, implement them in the MLton Standard ML compiler, and present an empirical evaluation. Our experiments show that the approach performs well, significantly improving efficiency over existing functional language implementations.

Vérification
Lundi 29 octobre 2018, 11 heures 10, Salle 1007
Éric Tanter (PLEIAD - Universidad de Chile & INRIA Paris) The Essence of Gradual Typing

Gradual typing enables programming languages to seamlessly combine dynamic and static checking. Language researchers and designers have extended a wide variety of type systems to support gradual typing. These efforts consistently demonstrate that designing a satisfactory gradual counterpart to a static type system is challenging, and this challenge only increases with the sophistication of the type system. Gradual type system designers need more formal tools to help them conceptualize, structure, and evaluate their designs.

Based on an understanding of gradual types as abstractions of static types, we have developed systematic foundations for gradual typing based on abstract interpretation, called Abstracting Gradual Typing (AGT for short). Gradual languages designed with the AGT approach satisfy, by construction, the established criteria for gradually-typed languages. After a brief introduction to AGT, this talk reports on our experience applying AGT to various typing disciplines.

Vérification
Lundi 22 octobre 2018, 11 heures 10, Salle 1007
Marie Fortin (LSV - ENS Paris-Saclay) It Is Easy to Be Wise After the Event: Communicating Finite-State Machines Capture First-Order Logic with “Happened Before”

Message sequence charts (MSCs) naturally arise as executions of communicating finite-state machines (CFMs), in which finite-state processes exchange messages through unbounded FIFO channels. We study the first-order logic of MSCs, featuring Lamport's happened-before relation. We introduce a star-free version of propositional dynamic logic (PDL) with loop and converse. Our main results state that (i) every first-order sentence can be transformed into an equivalent star-free PDL sentence (and conversely), and (ii) every star-free PDL sentence can be translated into an equivalent CFM. This answers an open question and settles the exact relation between CFMs and fragments of monadic second-order logic. As a byproduct, we show that first-order logic over MSCs has the three-variable property.

This is joint work with Benedikt Bollig and Paul Gastin, presented at CONCUR’18.

Vérification
Lundi 1 octobre 2018, 11 heures 10, Salle 1007
Mahsa Shirmohammadi (LIS - CNRS & Université Aix-Marseille) On Rationality of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n×m matrix M into a product of a nonnegative n×d matrix W and a nonnegative d×m matrix H. A longstanding open question, posed by Cohen and Rothblum in 1993, is whether a rational matrix M always has an NMF of minimal inner dimension d whose factors W and H are also rational. We answer this question negatively, by exhibiting a matrix for which W and H require irrational entries.

In this talk, we further exhibit a connection between Cohen and Rothblum's question with a question posed by Paz, in his seminal 1971 textbook. The latter question asks, given a probabilistic automaton (PA) with rational transition probabilities, does there always exist a minimal equivalent PA that also has rational transition probabilities? The PA and its minimal equivalent PA accept all finite words with equal probabilities. We use the established connection to answer Paz's question negatively, thus falsifying a positive answer claimed in 1974. (This talk is based on a paper in SODA 2017.)

Vérification
Lundi 24 septembre 2018, 11 heures 10, Salle 1007
Adam Shimi (IRIT - ENSEEIHT) Characterizing Asynchronous Message-Passing Models Through Rounds

One great issue in conceiving and specifying distributed algorithms is the sheer number of models, differing in subtle and often qualitative ways: synchrony, kind of faults, number of faults… In the context of message-passing, one solution is to restrict communication to proceed by round; A great variety of models can then be captured in the Heard-Of model, with predicates on the communication graph at each round. However, this raises another issue: how to characterize a given model by such a predicate? It depends on how to implement rounds in the model. This is straightforward in synchronous models, thanks to the upper bound on communication delay. On the other hand, asynchronous models allow unbounded message delays, which makes the implementation of rounds dependent on the specific message-passing model.

I will present our formalization of this characterization for asynchronous models. Specifically, we introduce Delivered collections: the collection of all messages delivered at each round, whether late or not. Defining predicates on Delivered collections then allows us to capture message-passing models at the same level of abstraction than Heard-Of predicates. The question is then reformulated to: what Heard-Of predicates can be generated by a given Delivered predicate?

I will provide an answer by considering all possible scheduling of deliveries of messages from the Delivered collections and change of rounds for the processes. Strategies of processes then constrain those scheduling by specifying when processes can change rounds; those ensuring no process is ever blocked forever generate a Heard-Of collection per run, that is a Heard-Of predicate. Finally, we use these strategies to nd a characterizing Heard-Of predicate through a dominance relation on strategies: a dominant strategy for a Delivered predicate implements the most constrained Heard-Of predicate possible. This approach oer both the dominant Heard-Of predicates for classical asynchronous models and the existence, for every Delivered predicate, of a strategy dominating large classes of strategies. On the whole, those results confirm the power of this formalization and demonstrate the characterization of asynchronous models through rounds as a worthwhile pursuit.

This is joint work with Aurélie Hurault and Philippe Quéinnec.

Vérification
Lundi 17 septembre 2018, 11 heures, Salle 1007
Franz Mayr (Universidad ORT, Uruguay) Regular inference on artificial neural networks

This paper explores the general problem of explaining the behavior of artificial neural networks (ANN). The goal is to construct a representation which enhances human understanding of an ANN as a sequence classifier, with the purpose of providing insight on the rationale behind the classification of a sequence as positive or negative, but also to enable performing further analyses, such as automata-theoretic formal verification. In particular, a probabilistic algorithm for constructing a deterministic finite automaton which is approximately correct with respect to an artificial neural network is proposed.

Vérification
Vendredi 29 juin 2018, 11 heures, Salle 3052
Mahsa Shirmohammadi (LIS, CNRS - Univ. Aix-Marseille) Costs and Rewards in Priced Timed Automata

We consider Pareto analysis of reachable states of multi-priced timed automata (MPTA): timed automata equipped with multiple observers that keep track of costs (to be minimised) and rewards (to be maximised) along a computation. Each observer has a constant non-negative derivative which may depend on the location of the MPTA. We study the Pareto Domination Problem, which asks whether it is possible to reach a target location via a run in which the accumulated costs and rewards Pareto dominate a given objective vector. We show that this problem is undecidable in general, but decidable for MPTA with at most three observers. For MPTA whose observers are all costs or all rewards, we show that the Pareto Domination Problem is PSPACE-complete. We also consider an epsilon-approximate Pareto Domination Problem that is decidable without restricting the number and types of observers. We develop connections between MPTA and Diophantine equations. Undecidability of the Pareto Domination Problem is shown by reduction from Hilbert's 10th Problem, while decidability for three observers is shown by a translation to a fragment of arithmetic involving quadratic forms.

Vérification
Lundi 25 juin 2018, 11 heures, Salle 3052
Nicolas Jeannerod (IRIF) Deciding the First-Order Theory of an Algebra of Feature Trees with Updates

The CoLiS project aims at applying techniques from deductive program verification and analysis of tree transformations to the problem of analyzing shell scripts. The data structure that is manipulated by these scripts, namely the file system tree, is a complex one.

We plan to use feature trees as an abstract representation of file system tree transformations. We thus investigate an extension of these feature trees that includes the update operation, which expresses that two trees are similar except in a particular subtree where there might have been changes.

We show that the first-order theory of this algebra is decidable via a weak quantifier elimination procedure which is allowed to swap existential quantifiers for universal quantifiers.

Vérification
Lundi 18 juin 2018, 11 heures, Salle 3052
Eugène Asarin (IRIF) Distance on timed words and applications

We introduce and study a new (pseudo) metric on timed words having several advantages:

- it is global: it applies to words having different number of events;

- it is realistic and takes into account imprecise observation of timed events; thus it reflects the fact that the order of events cannot be observed whenever they are very close to each other;

- it is suitable for quantitative verification of timed systems: we formulate and solve quantitative model-checking and quantitative monitoring in terms of the new distance, with reasonable complexity;

- it is suitable for information-theoretical analysis of timed systems: due to its pre-compactness the quantity of information in bits per time unit can be correctly defined and computed.

(Joint work with Nicolas Basset and Aldric Degorre)

Vérification
Mercredi 13 juin 2018, 15 heures, Salle 3052
Joël Ouaknine (MPI-SWS) Program Invariants

Automated invariant generation is a fundamental challenge in program analysis and verification, going back many decades, and remains a topic of active research. In this talk I'll present a select overview and survey of work on this problem, and discuss unexpected connections to other fields including algebraic geometry, group theory, and quantum computing. (No previous knowledge of these fields will be assumed.)

This is joint work with Ehud Hrushovski, Amaury Pouly, and James Worrell.

Séminaire du Pôle ASV

Vérification
Lundi 11 juin 2018, 11 heures, Salle 3052
François Pottier (INRIA Paris) Verifying a Hash Table and Its Iterators in Higher-Order Separation Logic

In this talk, I describe the specification and proof of an (imperative, sequential) hash table implementation. The usual dictionary operations (insertion, lookup, and so on) are supported, as well as iteration via folds and iterators. The code is written in OCaml and verified using higher-order separation logic, embedded in Coq, via the CFML tool and library. This case study is part of ANR project Vocal, whose aim is to build a verified OCaml library of basic data structures.

(This work was presented at CPP 2017.)

Vérification
Vendredi 1 juin 2018, 10 heures 30, 3052
Derek Dreyer (Max Planck Institute for Software Systems (MPI-SWS)) RustBelt: Logical Foundations for the Future of Safe Systems Programming

Rust is a new systems programming language, developed at Mozilla, that promises to overcome the seemingly fundamental tradeoff in language design between high-level safety guarantees and low-level control over resource management. Unfortunately, none of Rust's safety claims have been formally proven, and there is good reason to question whether they actually hold. Specifically, Rust employs a strong, ownership-based type system, but then extends the expressive power of this core type system through libraries that internally use unsafe features.

In this talk, I will present RustBelt (http://plv.mpi-sws.org/rustbelt), the first formal (and machine-checked) safety proof for a language representing a realistic subset of Rust. Our proof is extensible in the sense that, for each new Rust library that uses unsafe features, we can say what verification condition it must satisfy in order for it to be deemed a safe extension to the language. We have carried out this verification for some of the most important libraries that are used throughout the Rust ecosystem.

After reviewing some essential features of the Rust language, I will describe the high-level structure of the RustBelt verification and then delve into detail about the secret weapon that makes RustBelt possible: the Iris framework for higher-order concurrent separation logic in Coq (http://iris-project.org). I will explain by example how Iris generalizes the expressive power of O'Hearn's original concurrent separation logic in ways that are essential for verifying the safety of Rust libraries. I will not assume any prior familiarity with concurrent separation logic or Rust.

This is joint work with Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and the rest of the Iris team.

Vérification
Lundi 28 mai 2018, 11 heures, Salle 1007
Ana Sokolova (Universität Salzburg, Austria) Linearizability of Concurrent Data Structures via Order Extension Theorems

The semantics of concurrent data structures is usually given by a sequential specification and a consistency condition. Linearizability is the most popular consistency condition due to its simplicity and general applicability. Verifying linearizability is a difficult, in general undecidable, problem.

In this talk, I will discuss the semantics of concurrent data structures and present recent order extension results (joint work with Harald Woracek) that lead to characterizations of linearizability in terms of violations, a.k.a. aspects. The approach works for pools, queues, and priority queues; finding other applications is ongoing work. In the case of pools and queues we obtain already known characterizations, but the proof method is new, elegant, and simple, and we expect that it will lead to deeper understanding of linearizability.

Vérification
Lundi 14 mai 2018, 11 heures, Salle 1007
Raphaël Cauderlier (IRIF - Université Paris Diderot) A Verified Implementation of the Bounded List Container

Standard libraries of programming languages provide efficient implementations for common data containers. The details of these implementations are abstracted away by generic interfaces which are specified in terms of well understood mathematical structures such as sets, multisets, sequences, and partial functions. The intensive use of container libraries makes important their formal verification.

I will present a case study of full functional verification of the bounded doubly-linked list container of from the standard library of Ada 2012. This library is specified in SPARK and several client programs depend on this specification.

However, the low-level invariants required to verify this library cannot be expressed in SPARK. For this reason, the proof of functional correctness is done using VeriFast, a verification environment for Separation Logic extended with algebraic data types. The specifications proved entail the contracts of the Ada library and include new features. The verification method we used employs a precise algebraic model of the data structure and we show that it facilitates the verification and captures entirely the library contracts.

Vérification
Lundi 7 mai 2018, 11 heures, Salle 1007
Adrien Pommellet (IRIF) Static Analysis of Multithreaded Recursive Programs Communicating via Rendez-vous

We present in this paper a generic framework for the analysis of multi-threaded programs with recursive procedure calls, synchronisation by rendez-vous between parallel threads, and dynamic creation of new threads. To this end, we consider a model called \emph{Synchronized Dynamic Pushdown Networks} (SDPNs) that can be seen as a network of pushdown processes executing synchronized transitions, spawning new pushdown processes, and performing internal pushdown actions. The reachability problem for this model is unfortunately undecidable. Therefore, we tackle this problem by introducing an abstraction framework based on Kleene algebras in order to compute an abstraction of the execution paths between two regular sets of configurations. We combine an automata theoretic saturation procedure with constraint solving in a finite domain. We then apply this framework to a Counter-Example Guided Abstraction Refinement (CEGAR) scheme, using multiple abstractions of increasing complexity and precision.

Vérification
Lundi 9 avril 2018, 11 heures, Salle 1007
Ilya Sergey (University College London, UK) Programming and Proving with Distributed Protocols

Distributed systems play a crucial role in modern infrastructure, but are notoriously difficult to implement correctly. This difficulty arises from two main challenges: (a) correctly implementing core system components (e.g., two-phase commit), so all their internal invariants hold, and (b) correctly composing standalone system components into functioning trustworthy applications (e.g., persistent storage built on top of a two-phase commit instance). Recent work has developed several approaches for addressing (a) by means of mechanically verifying implementations of core distributed components, but no methodology exists to address (b) by composing such verified components into larger verified applications.

As a result, expensive verification efforts for key system components are not easily reusable, which hinders further verification efforts.

In my talk, I will present Disel, the first framework for implementation and reusable compositional verification of distributed systems and their clients, all within the mechanized, foundational context of the Coq proof assistant.

In Disel, users implement distributed systems using a domain specific language shallowly embedded in Coq and providing both high-level programming constructs as well as low-level communication primitives. Components of composite systems are specified in Disel as protocols, which capture system-specific logic and disentangle system definitions from implementation details. By virtue of Disel’s dependent type system, well-typed implementations always satisfy their protocols’ invariants and never go wrong, allowing users to verify system implementations interactively using Disel’s Hoare-style Separation Logic, which extends state-of-the-art techniques for concurrency verification to the distributed setting.

KEYWORDS: Distributed Systems, Separation Logic, Dependent Types, Coq

Vérification
Lundi 26 mars 2018, 11 heures, Salle 1007
Ivan Gazeau (LORIA & INRIA Nancy - Grand Est) Automated Verification of Privacy-type Properties for Security Protocols

The applied pi-calculus is a powerful framework to model protocols and to define security properties. In this symbolic model, it is possible to verify automatically complex security properties such as strong secrecy, anonymity and unlinkability properties which are based on equivalence of processes. In this talk, we will see an overview of a verification method used by a tool, Akiss. The tool is able to handle

- a wide range of cryptographic primitives (in particular AKISS is the only tool able to verify equivalence properties for protocols that use xor);

- protocols with else branches (the treatment of disequalities is often complicated).

We will also provide some insights on how interleaving due to concurrency can be effectively handled.

Vérification
Vendredi 23 mars 2018, 14 heures 30, Salle 3052
Javier Esparza (Tecnhische Universität München) One Theorem to Rule Them All: A Unified Translation of LTL into omega-Automata

We present a unified translation of LTL formulas into deterministic Rabin automata, limit-deterministic Büchi automata, and nondeterministic Büchi automata. The translations yield automata of asymptotically optimal size (double or single exponential, respectively). All three translations are derived from one single Master Theorem of purely logical nature. The Master Theorem decomposes the language of a formula into a positive boolean combination of languages that can be translated into omega-automata by elementary means. In particular, the breakpoint, Safra, and ranking constructions used in other translations are not needed.

Joint work with Jan Kretinsky and Salomon Sickert.

Séminaire du Pôle: Automata, Structures, et Vérification

Vérification
Lundi 19 mars 2018, 11 heures, Salle 1007
Rupak Majumdar (Max Planck Institute for Software Systems (MPI-SWS)) Effective Random Testing for Concurrent and Distributed Programs

Random testing has proven to be an effective way to catch bugs in distributed systems. This is surprising, as the space of executions is enormous. We provide a theoretical justification of the effectiveness of random testing under various “small depth” hypotheses. First, we show a general construction, using the probabilistic method from combinatorics, that shows that whenever a random test covers a fixed coverage goal with sufficiently high probability, a small randomly-chosen set of tests achieves full coverage with high probability. In particular, we show that our construction can give test sets exponentially smaller than systematic enumeration. Second, based on an empirical study of many bugs found by random testing in production distributed systems, we introduce notions of test coverage which capture the “small depth” hypothesis and are empirically effective in finding bugs. Finally, we show using combinatorial arguments that for these notions of test coverage we introduce, we can find a lower bound on the probability that a random test covers a given goal. Our general construction then explains why random testing tools achieve good coverage—and hence, find bugs—quickly.

Vérification
Lundi 12 mars 2018, 11 heures, Salle 1007
Thomas Colcombet (IRIF & CNRS) Automata and Program Analysis

This will be a presentation of a collaboration with Laure Daviaud and Florian Zuleger. We show how recent results concerning quantitative forms of automata help providing refined understanding of the properties of a system (for instance, a program). In particular, combining the size-change abstraction together with results concerning the asymptotic behavior of tropical automata yields extremely fine complexity analysis of some pieces of code.

Vérification
Lundi 26 février 2018, 11 heures, Salle 1007
Cătălin Hriţcu (INRIA Paris) When Good Components Go Bad: Formally Secure Compilation Despite Dynamic Compromise

We propose a new formal criterion for secure compilation, giving strong end-to-end security guarantees for software components written in unsafe, low-level languages with C-style undefined behavior. Our criterion is the first to model _dynamic_ compromise in a system of mutually distrustful components running with least privilege. Each component is protected from all the others—in particular, from components that have encountered undefined behavior and become compromised. Each component receives secure compilation guarantees up to the point when it becomes compromised, after which an attacker can take complete control over the component and use any of its privileges to attack the remaining uncompromised components. More precisely, we ensure that dynamically compromised components cannot break the safety properties of the system at the target level any more than equally privileged components without undefined behavior already could in the source language.

To illustrate this model, we build a secure compilation chain for an unsafe language with buffers, procedures, and components. We compile it to a simple RISC abstract machine with built-in compartmentalization and provide thorough proofs, many of them machine-checked in Coq, showing that the compiler satisfies our secure compilation criterion. Finally, we show that the protection guarantees offered by the compartmentalized abstract machine can be achieved at the machine-code level using either software fault isolation or a tag-based reference monitor.

Vérification
Lundi 19 février 2018, 11 heures, Salle 3052
Adrien Boiret (University of Warsaw) The “Hilbert Method” for Solving Transducer Equivalence Problems.

Classical results from algebra, such as Hilbert's Basis Theorem and Hilbert’s Nullstellensatz, have been used to decide equivalence for some classes of transducers, such as HDT0L (Honkala 2000) or more recently deterministic tree-to-string transducers (Seidl, Maneth, Kemper 2015). In this talk, we propose an abstraction of these methods. The goal is to investigate the scope of the “Hilbert method” for transducer equivalence that was described above.

Consider an algebra A in the sense of universal algebra, i.e. a set equipped with some operations. A grammar over A is like a context-free grammar, except that it generates a subset of the algebra A, and the rules use operations from the algebra A. The classical context-free grammars are the special case when the algebra A is the free monoid with concatenation. Using the “Hilbert method” one can decide certain properties of grammars over algebras that are fields or rings of polynomials over a field. The “Hilbert method” extends to grammars over certain well-behaved algebras that can be “coded” into fields or rings of polynomials. Finally, for these well-behaved algebras, one can also use the “Hilbert method” to decide the equivalence problem for transducers (of a certain transducer model that uses registers) that input trees and output elements of the well-behaved algebra.

In the talk, we give examples and non-examples of well-behaved algebras, and discuss the decidability / undecidability results connected to them. In particular:

-We show that equivalence is decidable for transducers that input (possibly ordered) trees and output unranked unordered trees.

-We show that equivalence is undecidable for transducers that input words and output polynomials over the rational numbers with one variable (but are allowed to use composition of polynomials).

Joint work with Mikołaj Bojańczyk, Janusz Schmude, Radosław Piórkowski at Warsaw University.

Joint Session w/ the ACS working group

Vérification
Jeudi 8 février 2018, 10 heures 30, Salle 3052
Vincent Laporte (IMDEA Software) Provably secure compilation of side-channel countermeasures: the case of cryptographic “constant-time”

Software-based countermeasures provide effective mitigation against side-channel attacks, often with minimal efficiency and deployment overheads. Their effectiveness is often amenable to rigorous analysis: specifically, several popular countermeasures can be formalized as information flow policies, and correct implementation of the countermeasures can be verified with state-of-the-art analysis and verification techniques. However, in absence of further justification, the guarantees only hold for the language (source, target, or intermediate representation) on which the analysis is performed.

We consider the problem of preserving side-channel countermeasures by compilation for cryptographic “constant-time”, a popular countermeasure against cache-based timing attacks. We present a general method, based on the notion of 2-simulation, for proving that a compilation pass preserves the constant-time countermeasure. Using the Coq proof assistant, we verify the correctness of our method and of several representative instantiations.

(Joint session with the PPS seminar)

Vérification
Lundi 29 janvier 2018, 11 heures, Salle 1007
Engel Lefaucheaux (ENS Cachan / IRISA Rennes) Probabilistic Disclosure: Maximisation vs. Minimisation

We consider opacity questions where an observation function provides to an external attacker a view of the states along executions and secret executions are those visiting some state from a fixed subset. Disclosure occurs when the observer can deduce from a finite observation that the execution is secret. In a probabilistic and nondeterministic setting, where an internal agent can choose between actions, there are two points of view, depending on the status of this agent: the successive choices can either help the attacker trying to disclose the secret, if the system has been corrupted, or they can prevent disclosure as much as possible if these choices are part of the system design. In the former situation, corresponding to a worst case, the disclosure value is the supremum over the strategies of the probability to disclose the secret (maximisation), whereas in the latter case, the disclosure is the infimum (minimisation). We address quantitative problems (comparing the optimal value with a threshold) and qualitative ones (when the threshold is zero or one) related to both forms of disclosure for a fixed or finite horizon. For all problems, we characterise their decidability status and their complexity. We discover a surprising asymmetry: on the one hand optimal strategies may be chosen among deterministic ones in maximisation problems, while it is not the case for minimisation. On the other hand, for the questions addressed here, more minimisation problems than maximisation ones are decidable.

Vérification
Lundi 22 janvier 2018, 11 heures, Salle 1007
Josef Widder (TU Wien) Synthesis of Distributed Algorithms with Parameterized Thresholds Guards

Fault-tolerant distributed algorithms are notoriously hard to get right. I present an automated method that helps in that process: the designer provides specifications (the problem to be solved) and a sketch of a distributed algorithm that keeps arithmetic details unspecified. Our tool then automatically fills the missing parts. In particular, I will consider threshold-based distributed algorithms, where a process has to wait until the number of messages it receives reaches a certain threshold, in order to perform an action. Such algorithms are typically used for achieving fault tolerance in distributed algorithms for broadcast, atomic commitment, or consensus. Using this method, one can synthesize distributed algorithms that are correct for every number n of processes and every number t of faults, provided some resilience condition holds, e.g., n > 3t. This approach combines recent progress in parameterized model checking of distributed algorithms—which I also address—with counterexample-guided synthesis.

This is joint work with Marijana Lazić, Igor Konnov, and Roderick Bloem.

Vérification
Lundi 15 janvier 2018, 11 heures, Salle 1007
Chao Wang (IRIF) Checking Linearizability of Concurrent Priority Queues

Efficient implementations of concurrent objects such as atomic collections are essential to modern computing. Unfortunately their correctness criteria — linearizability with respect to given ADT specifications — are hard to verify. Verifying linearizability is undecidable in general, even on classes of implementations where the usual control-state reachability is decidable. In this work we consider concurrent priority queues which are fundamental to many multi-threaded applications like task scheduling or discrete event simulation, and show that verifying linearizability of such implementations is reducible to control-state reachability. This reduction entails the first decidability results for verifying concurrent priority queues with an unbounded number of threads, and it enables the application of existing safety-verification tools for establishing their correctness.

Vérification
Lundi 8 janvier 2018, 11 heures, Salle 1007
Jean-Jacques Lévy (IRIF & INRIA) Proofs of graph algorithms with automation and their readability

In this talk, we present a proof of correctness for an algorithm computing strongly connected components in a directed graph by Tarjan [1972]. It will be the starting point of a discussion about the readability of formal proofs. This proof was achieved with the Why3 system and the Coq/ssreflect proof assistant. The same proof was redone fully in Coq/ssreflect and Isabelle/HOL.

This is joint work with Ran Chen and was presented at VSTTE 2017. The Coq and Isabelle proofs were achieved by Cyril Cohen, Laurent Théry and Stephan Merz.