Je travaille principalement dans le domaine de la combinatoire
énumérative, de l'analyse de structures discrètes
aléatoires, et de la combinatoire algébrique.
Je m'intéresse en particulier aux cartes (qui sont des
graphes plongés sur des surfaces) et aux objets combinatoires ou algébriques qui s'y apparentent (arbres, graphes, intervalles de Tamari, groupes de réflexions...) .
Combinatorics and Interactions — combi17, a trimester dedicated to Combinatorics in Paris in 2017!
That's it, many thanks to all the participants! The webpage of the program is still here.
A previous manuscript, entitled Tamari lattices and parking functions: proof of a conjecture of F. Bergeron and never submitted (since it was soon superseded by this one) is available there:
(previous-manuscript-arxiv).
It contains only the results on the dimension/enumeration, not the full representation, and it may be a more accessible, less technical, introduction to our method.
Combinatorics, Probability, and Computing 18(04):477-516 (2009), 40 pages
(pdf file)
a related, less general, conference paper Are even maps on surfaces likely to be bipartite?
appeared in the proceedings of
MathInfo'08. It presents the results in the even degree case.
(short version)